window下 人工智能 Keras、TensorFlow、PyTorch、CUDA、cuDNN 的

======= 人工智能 Keras、TensorFlow 的环境安装 ======?
1.window下?安装 anaconda(python 3.6 / python 3.7)
https://blog.csdn.net/zimiao552147572/article/details/88854239
2.安装 ubuntu 16/18
https://blog.csdn.net/zimiao552147572/article/details/88854370
3.window下安装 Keras、TensorFlow(先安装CUDA、cuDNN,再安装Keras、TensorFlow)

https://blog.csdn.net/zimiao552147572/article/details/88854746





Keras、PyTorch、MXNet
用户画像
C、C++笔记
JavaWeb+大数据笔记
CDH 6、CDH5
Python笔记
https://pan.baidu.com/s/1OBd1rbwGx0F8YnefM7R0Uw
提取码0hal
https://pan.baidu.com/s/1TKNZ6TtDxDtDUnezrcXJ8Q
提取码2ber
https://pan.baidu.com/s/1_XWMwcoNuDPdE3xkluo08A
提取码b12m
https://pan.baidu.com/s/1eW8YSrasGiTXpBFSSJd78Q
提取码7aeu
https://pan.baidu.com/s/1xi_3T6Nw__Sy-QQaN29O4Q
提取码1gcs

1.CDH 6 的安装和使用 、CDH5安装
https://blog.csdn.net/zimiao552147572/article/details/87190368
https://blog.csdn.net/zimiao552147572/article/details/94158217

2.用户画像
https://blog.csdn.net/zimiao552147572/article/details/88425850

3.Spark 实时处理
https://blog.csdn.net/zimiao552147572/article/details/88556157

4.大数据组件安装(非CDH)和使用 总文章
https://blog.csdn.net/zimiao552147572/article/details/88602425

5.大数据组件使用 总文章
https://blog.csdn.net/zimiao552147572/article/details/88602959

6.window下 人工智能 Keras、TensorFlow、PyTorch、CUDA、cuDNN 的环境安装 总文章、window 安装 PyTorch、window下安装MXNet
https://blog.csdn.net/zimiao552147572/article/details/88854126
https://blog.csdn.net/zimiao552147572/article/details/94333706
https://blog.csdn.net/zimiao552147572/article/details/95807839

7.人工智能AI:Keras PyTorch 深度学习实战(不定时更新)
https://blog.csdn.net/zimiao552147572/article/details/88867161

8.搜索引擎:Elasticsearch、Solr、Lucene
https://blog.csdn.net/zimiao552147572/article/details/90050034

原文地址:https://blog.51cto.com/12393044/2439934

时间: 2024-10-29 05:01:22

window下 人工智能 Keras、TensorFlow、PyTorch、CUDA、cuDNN 的的相关文章

深度学习框架哪家强:TensorFlow?Caffe?MXNet?Keras?PyTorch?

深度学习框架哪家强:TensorFlow?Caffe?MXNet?Keras?PyTorch?对于这几大框架在运行各项深度任务时的性能差异如何,各位读者不免会有所好奇. 微软数据科学家Ilia Karmanov最新测试的结果显示,亚马逊MXNet在CNN.RNN与NLP情感分析任务上性能强劲,而TensorFlow仅擅长于特征提取. 测试详情更新在Ilia Karmanov的GitHub项目DeepLearningFrameworks(https://github.com/ilkarman/De

window10上安装python+CUDA+CuDNN+TensorFlow

软件 版本 Window10 X64 python 3.6.4(64位) CUDA CUDA Toolkit 9.0 (Sept 2017) CuDNN cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0 以上版本测试通过. 安装步骤: 1.安装python,记得要勾选pip. 2.检测是否支持CUDA. NVIDIA官网查询,具体见:https://developer.nvidia.com/cuda-gpus,就可以知道是否可以使用带GPU支持的TensorFlo

Tensorflow currently has no official prebuild for your CUDA, cuDNN combination.

INFO CUDA version: 10. ERROR cuDNN not found. See https://github.com/deepfakes/faceswap/blob/master/INSTALL.md#cudnn for instructions WARNING Tensorflow currently has no official prebuild for your CUDA, cuDNN combination. Either install a combination

[AI开发]centOS7.5上基于keras/tensorflow深度学习环境搭建

这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).windows上该环境的搭建 :) 前面三篇博客代码实现均基于该环境(开发或者测试过): [AI开发]Python+Tensorflow打造自己的计算机视觉API服务 [AI开发]基于深度学习的视频多目标跟踪实现 [AI开发]视频多目标跟踪高级版 运行环境 1) centOS 7.5 ,不要安装GUI桌面:

Keras vs. PyTorch in Transfer Learning

We perform image classification, one of the computer vision tasks deep learning shines at. As training from scratch is unfeasible in most cases (as it is very data hungry), we perform transfer learning using ResNet-50 pre-trained on ImageNet. We get

Keras vs. PyTorch

We strongly recommend that you pick either Keras or PyTorch. These are powerful tools that are enjoyable to learn and experiment with. We know them both from the teacher’s and the student’s perspective. Piotr has delivered corporate workshops on both

win10安装CUDA CUDNN tensorflow-gpu

#1 安装anaconda 官网下载安装即可.python3.7版本 #2 安装CUDA CUDNN 注意tensorflow不同版本所需的CUDA及CUDA对应的CUDNN不同,注意版本匹配! 参考 https://blog.csdn.net/omodao1/article/details/83241074 https://developer.nvidia.com/cuda-gpus https://developer.nvidia.com/cuda-toolkit-archive https

Ubuntu系统---安NVIDIA 驱动后 CUDA+cuDNN 安装

Ubuntu系统---安NVIDIA 驱动后  CUDA+cuDNN 安装 上接<Ubuntu系统---NVIDIA 驱动安装>.预配置环境:Ubuntu16.04 + GTX2080Ti + CUDA10.0 + yolo v3+Opencv3.4.2 这一步,紧接着“NVIDIA 驱动已安完”后的“CUDA安装”.根据Ubuntu16.04 + GTX2080T 在英伟达官网上选择合适的驱动,有很多版本可选这里选择了NVIDIA-Linux-x86_64-410.78.run .没安装之前

# Ubuntu16.04安装nvidia驱动+CUDA+cuDNN

Ubuntu16.04安装nvidia驱动+CUDA+cuDNN 准备工作 1.查看GPU是否支持CUDA lspci | grep -i nvidia 2.查看Linux版本 uname -m && cat /etc/*release nvidia驱动 1. 先卸载原有N卡驱动 #for case1: original driver installed by apt-get: sudo apt-get remove --purge nvidia* #for case2: original