数学之美观后感之谈谈中文分词

数学之美观后感谈谈中文分词读后感
不简单的美
简单、高效,一直是人们追捧着的事物,人们讨厌麻烦的事物,希望简洁可以取缔一切。可汉字不同,纵使你万般精简,也褪去不了她独有的魅力。一句话,常常可以分隔成多个部分,每一部分可以比作一个颗粒,然后一个颗粒,一个颗粒的加工、细化。但是汉字不同,有时,相同的颗粒有不同的意思,也就是文中所提到的二义性,就如北京大学,其中北京和大学两个的词的意思完全不同。所以机械翻译时,要将颗粒变大一点,“北京大学”就不能被拆分为两个词。这种方法也可以应用到其它语言当中,就如英语的手写,字母间的间距就很难被分清。

代码规范

参考链接:https://blog.csdn.net/aaaaa_alice/article/details/82144460

原文地址:https://www.cnblogs.com/ytshuai/p/11488395.html

时间: 2024-11-07 11:54:25

数学之美观后感之谈谈中文分词的相关文章

数学之美札记:谈谈中文分词

之前的札记中,提到了使用统计语言模型进行自然语言的处理,而这些语言模型是建立在词的基础上,因为词是表达语义的最小单位.西方的拼音语言,词之间有明确的分界符,统计和使用语言模型处理相对简单.而对于汉语等东方语言,词之间没有明确的分界符,这就需要先对句子进行中文分词. 中文分词最简单的方式是查字典,这种方式最早由北京航空航天大学的梁南元教授提出.简单的来说,就是把一个句子从左到右扫描一遍,遇到字典里有的词就标识出来,遇到复合词(比如"上海大学")就找最长的词匹配, 遇到不认识的字串就分割成

第四章谈谈中文分词

1.中文分词的演变 由于中文等语言,字与字之间是没有空格隔开的,所以需要分词.最简单的分词就是查字典.就是从左到右或者从右到左扫描一句话,然后找到最长的匹配.这种方法可以解决七八成的分词问题.但是毕竟太简单了一点.后来哈工大王晓龙博士把查字典方法理论化,发展成最少词数的分词理论,即一句话应该分成数量最少的词串.但是他无法解决“北京大学生”这样的二义性分割问题.直到20世纪90年代,郭进博士用统计语言模型成功解决了分词二义性问题.假设我们有几种不同的分词方法,那么最好的方法应该是出现概率最大的划分

《数学之美》读书记录【思维导图记录】:第四章,谈谈中文分词

原文地址:https://www.cnblogs.com/progor/p/8591907.html

.net 的一个分词系统(jieba中文分词的.NET版本:jieba.NET)

简介 平时经常用Python写些小程序.在做文本分析相关的事情时免不了进行中文分词,于是就遇到了用Python实现的结巴中文分词.jieba使用起来非常简单,同时分词的结果也令人印象深刻,有兴趣的可以到它的在线演示站点体验下(注意第三行文字). .NET平台上常见的分词组件是盘古分词,但是已经好久没有更新了.最明显的是内置词典,jieba的词典有50万个词条,而盘古的词典是17万,这样会造成明显不同的分词效果.另外,对于未登录词,jieba“采用了基于汉字成词能力的HMM模型,使用了Viterb

[python] 使用Jieba工具中文分词及文本聚类概念

声明:由于担心CSDN博客丢失,在博客园简单对其进行备份,以后两个地方都会写文章的~感谢CSDN和博客园提供的平台.        前面讲述了很多关于Python爬取本体Ontology.消息盒InfoBox.虎扑图片等例子,同时讲述了VSM向量空间模型的应用.但是由于InfoBox没有前后文和语义概念,所以效果不是很好,这篇文章主要是爬取百度5A景区摘要信息,再利用Jieba分词工具进行中文分词,最后提出文本聚类算法的一些概念知识.        相关文章:        [Python爬虫]

jieba中文分词的.NET版本:jieba.NET

简介 平时经常用Python写些小程序.在做文本分析相关的事情时免不了进行中文分词,于是就遇到了用Python实现的结巴中文分词.jieba使用起来非常简单,同时分词的结果也令人印象深刻,有兴趣的可以到它的在线演示站点体验下(注意第三行文字). .NET平台上常见的分词组件是盘古分词,但是已经好久没有更新了.最明显的是内置词典,jieba的词典有50万个词条,而盘古的词典是17万,这样会造成明显不同的分词效果.另外,对于未登录词,jieba“采用了基于汉字成词能力的HMM模型,使用了Viterb

模式识别之中文分词

概率论只不过是把常识用数学公式表达了出来. ——拉普拉斯 记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时:有一次,在书店看到一本书,名叫贝叶斯方法.当时数学系的课程还没有学到概率统计.我心想,一个方法能够专门写出一本书来,肯定很牛逼.后来,我发现当初的那个朴素归纳推理成立了——这果然是个牛逼的方法. ——题记 0. 前言 这是一篇关于贝叶斯方法的科普文,我会尽量少用公式,多用平白的语言叙述,多举实际例子.更严格的公式和计算我会在相应的地方注明参考资料.贝叶斯方法被证明是

(转)jieba中文分词的.NET版本:jieba.NET

简介 平时经常用Python写些小程序.在做文本分析相关的事情时免不了进行中文分词,于是就遇到了用Python实现的结巴中文分词.jieba使用起来非常简单,同时分词的结果也令人印象深刻,有兴趣的可以到它的在线演示站点体验下(注意第三行文字). .NET平台上常见的分词组件是盘古分词,但是已经好久没有更新了.最明显的是内置词典,jieba的词典有50万个词条,而盘古的词典是17万,这样会造成明显不同的分词效果.另外,对于未登录词,jieba“采用了基于汉字成词能力的HMM模型,使用了Viterb

中文分词实践(基于R语言)

背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来,然后做中文分词+词频统计,最后将统计结果简单做个标签云,效果如下: 后续:中文分词是中文信息处理的基础,分词之后,其实还有特别多有趣的文本挖掘工作可以做,也是个知识发现的过程,以后有机会再学习下. ================================================== * 中文分词常用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Smallse