[ZJOI2009]取石子游戏

瞪了题解两三天,直接下转第二篇题解就康懂了

首先我们令 :

\(L[i][j]\) 表示当前 \([i,j]\) 区间左侧放置 \(L[i,j]\) 数量的石子后先手必败

\(R[i][j]\) 表示当前 \([i,j]\) 区间右侧放置 \(R[i,j]\) 数量的石子后先手必败

那么最后我们只要判断 \(a[1]\) 是否等于 \(L[2,n]\) 或者 \(a[n]\) 是否等于 \(R[1,n-1]\) 即可

唯一性

考虑证明 \(L[i][j]\) 和 \(R[i][j]\) 的唯一性,发现我们只需要证明一个成立即可

假设 \(L[i][j]\) 存在两个,那么我们先让 \([i,j]\) 左边放上大的 \(L[i][j]\) ,那么它可以一步转移到另一个小的 \(L[i][j]\) ,仍旧是一个必败态,与定义矛盾,故 \(L[i][j]\) 只存在一个合法值

转移

然后我们分类讨论...

假设当前处理到了 \(L[i][j]\) ,那么我们根据 \(L[i][j-1] ,R[i][j-1] ,a[j]\) 来处理,我们令 \(L=L[i][j-1],R=R[i][j-1],x=a[j]\)

  1. \(x=R\)

    这种情况下,我们令 \(L[i][j]=0\) ,因为 [i,j] 已经是个必败态了,左边加上任意石子,先手都可以全部取完,然后后手面对必败态

  2. \(x<L,x<R\)

    这种情况下,我们令 \(L[i][j]=x\) ,这样先手不管从哪堆开始取,如果没有取完,后手只需要在另一堆取走相同数量的石子,就回到了原来的情况,那么如果说先手把一堆取完了,另一堆的石子数量必然是小于 L 和 R 的,相当于是先手从数量为 L 或者 R 的堆中取走了一些石子,后手必胜

  3. \(L<=x<R\)

    这种情况下,我们令 \(L[i][j]=x+1\) ,这样先手左边取左边取,取到 L 时,后手取光右边即可;左边取到比 L 大的话,右边只要取走相同的石子就好了,这样可以变回同样的状态;取到比 L 小的话,右边取到相同的石子数为止,这样两边的石子数都小于 L 和 R ,这样就回到了状态 2 ;如果先手在右边取,如果取到比 L 大,我们维持状态即可,和上面一样;如果比 L 小,那么我们左边取到和左边相等,这样还是回到了状态 2 ;如果右边被先手取光了,那么我们把左边取到 L ,先手面临的就是必败态了

  4. \(R<x<L\)

    这种情况下,我们令 \(L[i][j]=x-1\) 即可,讲道理是和状态 3 差不多的情况 Q^Q

  5. \([i,i]\) 的边界情况

    我们只需要让 \(L[i][i]=a[i]\) 即可...因为左边放上 a[i] 就是先手必败的状态,考虑此时无论先手在哪里取,后手只要在另一堆里面取相同石子即可...

感谢

ORZ YYB

Code

//by Judge
#include<bits/stdc++.h>
#define Rg register
#define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i<I;++i)
#define ll long long
using namespace std;
const int M=1003;
typedef int arr[M][M];
#ifndef Judge
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
char buf[1<<21],*p1=buf,*p2=buf;
inline ll read(){ ll x=0,f=1; char c=getchar();
    for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
    for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;
} char sr[1<<21];int CC=-1;
inline void Ot(){fwrite(sr,1,CC+1,stdout),CC=-1;}
int n,a[M]; arr L,R;
int main(){ int T=read();
    while(T--){ n=read();
        fp(i,1,n) L[i][i]=R[i][i]=a[i]=read();
        fp(len,1,n-2) fp(i,2,n-len){
            Rg int j=i+len;
            if(R[i][j-1]==a[j]) L[i][j]=0;
            else if(L[i][j-1]>a[j]&&R[i][j-1]>a[j]) L[i][j]=a[j];
            else if(L[i][j-1]<=a[j]&&R[i][j-1]>a[j]) L[i][j]=a[j]+1;
            else if(L[i][j-1]>a[j]&&R[i][j-1]<a[j]) L[i][j]=a[j]-1;
            else L[i][j]=a[j];
            if(R[i+1][j]==a[i]) R[i][j]=0;
            else if(L[i+1][j]>a[i]&&R[i+1][j]>a[j]) R[i][j]=a[i];
            else if(L[i+1][j]<=a[i]&&R[i+1][j]>a[j]) R[i][j]=a[i]+1;
            else if(L[i+1][j]>a[i]&&R[i+1][j]<a[j]) R[i][j]=a[i]-1;
            else R[i][j]=a[i];
        }
        sr[++CC]=48+(a[1]!=L[2][n]),sr[++CC]='\n';
    }
    return Ot(),0;
}

原文地址:https://www.cnblogs.com/Judge/p/11220314.html

时间: 2024-11-03 23:45:14

[ZJOI2009]取石子游戏的相关文章

bzoj1413 [ZJOI2009]取石子游戏

Description 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中取出若干颗石子,可以将那一堆全部取掉,但不能不取,不能操作的人就输了. Orez问:对于任意给出一个初始一个局面,是否存在先手必胜策略. Input 文件的第一行为一个整数T,表示有 T组测试数据.对于每组测试数据,第一行为一个整数n,表示有n堆石子:第二行为n个整数ai,依次表示

P2599 [ZJOI2009]取石子游戏

题目描述 在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中取出若干颗石子,可以将那一堆全部取掉,但不能不取,不能操作的人就输了. Orez问:对于任意给出一个初始一个局面,是否存在先手必胜策略. 输入格式 文件的第一行为一个整数T,表示有 T组测试数据.对于每组测试数据,第一行为一个整数n,表示有n堆石子:第二行为n个整数ai,依次表示每堆石子的数目.

poj 1067||hdu 1527 取石子游戏(博弈论,Wythoff Game)

取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37893   Accepted: 12684 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者

HDU 1527 取石子游戏 威佐夫博弈

题目来源:HDU 1527 取石子游戏 题意:中文 思路:威佐夫博弈 必败态为 (a,b ) ai + i = bi     ai = i*(1+sqrt(5.0)+1)/2   这题就求出i然后带人i和i+1判断是否成立 以下转自网上某总结 有公式ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,-,n 方括号表示取整函数) 其中出现了黄金分割数(1+√5)/2 = 1.618-,因此,由ak,bk组成的矩形近似为黄金矩形 由于2/(1+√5)=(√5-1)/2,可以先

BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]

小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有,第一步如何取石子. N≤10 Ai≤1000 裸SG函数啊 然而我连SG函数都不会求了,WA了一会儿之后照别人代码改发现vis公用了... #include <iostream> #include <cstdio> #include <cstring> #includ

hdu 2516 取石子游戏

取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2816    Accepted Submission(s): 1626 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win&qu

BZOJ 1413 取石子游戏(DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413 题意:n堆石子排成一排.每次只能在两侧的两堆中选择一堆拿.至少拿一个.谁不能操作谁输. 思路:参考这里. int f1[N][N],f2[N][N],n,a[N]; void deal() { RD(n); int i,j,k; FOR1(i,n) RD(a[i]),f1[i][i]=f2[i][i]=a[i]; int p,q,x; for(k=2;k<=n;k++) for(

POJ - 1067 取石子游戏(包括贝蒂定理的巧妙证明)

关键词: 取石子游戏.威佐夫博奕.betty贝蒂定理.胜态.负态.状态转移.覆盖(分划).高斯函数.第二数学归纳法.黄金分割比例 题目: Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. Input 输入包含若干行,表示若干种石

HDU 2516 取石子游戏 (博弈论)

取石子游戏 Problem Description 1堆石子有n个,两人轮流取.先取者第1次能够取随意多个,但不能所有取完.以后每次取的石子数不能超过上次取子数的2倍.取完者胜.先取者负输出"Second win".先取者胜输出"First win". Input 输入有多组.每组第1行是2<=n<2^31. n=0退出. Output 先取者负输出"Second win". 先取者胜输出"First win".