HTTP 请求夹带(smuggling)攻击

什么是HTTP请求夹带(smuggling)攻击
HTTP请求走私是一种干扰网站处理从一个或多个用户接收的HTTP请求序列的方式的技术。

请求夹带漏洞危害,允许攻击者绕过安全控制,获取对敏感数据的未授权访问,并直接危及其他应用程序用户。

HTTP请求夹带攻击是怎么发生的?

今天的Web应用程序经常在用户和最终应用程序逻辑之间使用HTTP服务器链。

用户将请求发送到前端服务器(有时称为负载平衡器或反向代理),此服务器将请求转发给一个或多个后端服务器。

在现代基于云的应用程序中,这种类型的体系结构越来越常见,并且在某些情况下是不可避免的。

当前端服务器将HTTP请求转发到后端服务器时,它通常通过相同的后端网络连接发送多个请求,因为这样做效率更高,性能更高。

协议非常简单:HTTP请求一个接一个地发送,接收服务器解析HTTP请求标头以确定一个请求结束的位置和下一个请求的开始:

在这种情况下,前端和后端系统就请求之间的界限达成一致至关重要。否则,攻击者可能会发送一个模糊的请求,前端和后端系统会对其进行不同的解释:

在这里,攻击者将后端服务器的部分前端请求解释为下一个请求的开始。它有效地预先附加到下一个请求,因此可能会干扰应用程序处理请求的方式。这是一次请求夹带攻击,它可能会造成严重的后果。

如何构造 HTTP 请求夹带漏洞
HTTP请求夹带漏洞出现的原因是因为HTTP规范提供了两种不同的方式来指定请求的结束位置:Content-Length标头和Transfer-Encoding标头。
Content-Length标头很简单,它以字节为单位指定消息体的长度。 例如:

POST /search HTTP/1.1
Host: normal-website.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 11

q=smuggling

  

Transfer-Encoding标头可用于指定消息体使用分块编码。
这意味着报文包含一个或多个数据块。 每个块包含以字节为单位的块大小(以十六进制表示),后跟换行符,后跟块内容。 消息以大小为零的块结束。 例如:

POST /search HTTP/1.1
Host: normal-website.com
Content-Type: application/x-www-form-urlencoded
Transfer-Encoding: chunked

b
q=smuggling
0

由于HTTP规范提供了两种不同的方法来指定HTTP消息的长度,因此单个消息可以同时使用这两种方法,这样它们就会相互冲突。

HTTP规范试图通过声明防止此问题,如果Content-Length和Transfer-Encoding标头都存在,则应忽略Content-Length标头。这可能足以避免在只有一台服务器正在运行时出现歧义,但在两台或多台服务器链接在一起时则不行。

在这种情况下,出现问题有两个原因:
1.某些服务器不支持请求中的Transfer-Encoding标头。
2.如果标头以某种方式进行模糊处理,则可能会导致某些支持Transfer-Encoding标头的服务器不处理它。

如果前端服务器和后端服务器与(可能模糊的)Transfer-Encoding标头的行为不同,那么他们可能不同意连续请求之间的边界,从而导致请求夹带漏洞。

如何执行HTTP请求夹带攻击

请求夹带攻击涉及将Content-Length头和Transfer-Encoding头放入单个HTTP请求并对其进行操作,以便前端和后端服务器以不同方式处理请求。完成此操作的确切方式取决于两台服务器的行为:

CL.TE:前端服务器使用Content-Length头,后端服务器使用Transfer-Encoding头。
TE.CL:前端服务器使用Transfer-Encoding标头,后端服务器使用Content-Length标头。
TE.TE:前端和后端服务器都支持Transfer-Encoding标头,但是可以通过以某种方式模糊标头来诱导其中一个服务器不处理它

CL.TE漏洞

这里前端服务器使用Content-Length头,后端服务器使用Transfer-Encoding头。我们可以执行简单的HTTP请求夹带攻击,如下所示:

POST / HTTP/1.1
Host: vulnerable-website.com
Content-Length: 13
Transfer-Encoding: chunked

0

SMUGGLED

前端服务器处理Content-Length头并确定请求主体长度为13个字节,直到SMUGGLED结束。此请求将转发到后端服务器。

后端服务器处理Transfer-Encoding标头,因此将消息体视为使用分块编码。

它处理第一个块,它被称为零长度,因此被视为终止请求。以下字节SMUGGLED未经处理,后端服务器将这些字节视为序列中下一个请求的开始。

TE.CL漏洞
这里,前端服务器使用Transfer-Encoding标头,后端服务器使用Content-Length标头。我们可以执行简单的HTTP请求夹带攻击,如下所示:

POST / HTTP/1.1
Host: vulnerable-website.com
Content-Length: 3
Transfer-Encoding: chunked

8
SMUGGLED
0

注意:
要使用Burp Repeater发送此请求,您首先需要转到Repeater菜单,并确保未选中“Update Content-Length”选项。
您需要在最后的0之后包含尾随序列\r\n\r\n

前端服务器处理Transfer-Encoding标头,因此将消息体视为使用分块编码。它处理第一个块,长度为8个字节,直到SMUGGLED之后的行的开头。它处理第二个块,它被称为零长度,因此被视为终止请求。此请求将转发到后端服务器。
后端服务器处理Content-Length标头并确定请求主体长度为3个字节,直到8之后的行的开头。以SMUGGLED开头的以下字节未经处理,后端服务器将这些视为序列中下一个请求的开头。

TE.TE行为:混淆TE头、

这里,前端和后端服务器都支持Transfer-Encoding标头,但是可以通过以某种方式模糊标头来诱导其中一个服务器不处理它。

有可能无休止地混淆Transfer-Encoding标头。例如:

Transfer-Encoding: xchunked

Transfer-Encoding : chunked

Transfer-Encoding: chunked
Transfer-Encoding: x

Transfer-Encoding:[tab]chunked

[space]Transfer-Encoding: chunked

X: X[\n]Transfer-Encoding: chunked

Transfer-Encoding
: chunked

这些技术中的每一种都涉及到与HTTP规范的细微偏离。实现协议规范的实际代码很少以绝对精度遵守它,并且不同的实现通常容忍规范的不同变化。要发现TE.TE漏洞,有必要找到Transfer-Encoding标头的一些变体,以便只有一个前端或后端服务器处理它,而另一个服务器忽略它。

根据是否可以诱导不处理混淆的Transfer-Encoding标头的前端服务器或后端服务器,攻击的其余部分将采用与CL.TE或TE.CL漏洞相同的形式已经描述过。

如何防止HTTP请求夹带漏洞
在前端服务器通过同一网络连接将多个请求转发到后端服务器的情况下会出现HTTP请求走私漏洞,并且用于后端连接的协议存在两个服务器不同意关于两者之间边界的风险要求。防止HTTP请求走私漏洞的一些通用方法如下:

禁用后端连接的重用,以便通过单独的网络连接发送每个后端请求。
使用HTTP / 2进行后端连接,因为此协议可防止请求之间的边界模糊不清。
为前端和后端服务器使用完全相同的Web服务器软件,以便他们就请求之间的界限达成一致。
在某些情况下,可以通过使前端服务器规范化模糊请求或使后端服务器拒绝模糊请求并关闭网络连接来避免漏洞。然而,这些方法可能比上面确定的通用缓解更容易出错。

web-security 练习
要解决实验问题,请将请求走私到后端服务器,以便后端服务器处理的下一个请求似乎使用GPOST方法。

https://portswigger.net/web-security/request-smuggling/lab-basic-cl-te

https://portswigger.net/web-security/request-smuggling/lab-basic-te-cl

https://portswigger.net/web-security/request-smuggling/lab-ofuscating-te-header

参考

https://portswigger.net/web-security/request-smuggling

原文地址:https://www.cnblogs.com/icez/p/web-security-request-smuggling.html

时间: 2024-10-09 03:42:27

HTTP 请求夹带(smuggling)攻击的相关文章

我要学ASP.NET MVC 3.0(十三): MVC 3.0 防止跨站点请求伪造 (CSRF) 攻击

我要学ASP.NET MVC 3.0(十三): MVC 3.0 防止跨站点请求伪造 (CSRF) 攻击 概述      众所周知,ASP.Net MVC程序在浏览器运行时产生了标准的Html标签,包括浏览器要发送的关键数据等内容都在Html内容里面,听起来不错,但是假如我们仿造类似的Html内容,更改里面关键数据,在浏览器运行起来会怎么样呢?好下面我们就做这样一个例子.       CSRF攻击例子 首先我们拿以前做好的person/edit作为例子 先看控制器代码 //初始页面        

CSRF(跨站请求伪造)攻击

CSRF(跨站请求伪造)攻击 CSRF(Cross Site Request Forgery,跨站请求伪造)是一种近年来才逐渐被大众了解的网络攻击方式,又被称为One-Click Attack或Session Riding. 攻击原理 CSRF攻击的大致方式如下:某用户登录了A网站,认证信息保存在cookie中.当用户访问攻击者创建的B网站时,攻击者通过在B网站发送一个伪造的请求提交到A网站服务器上,让A网站服务器误以为请求来自于自己的网站,于是执行响应的操作,该用户的信息边遭到了篡改.总结起来

跨站请求伪造(CSRF攻击)理解

一  概念 你这可以这么理解CSRF攻击:攻击者盗用了你的身份,以你的名义发送恶意请求.CSRF能够做的事情包括:以你名义发送邮件,发消息,盗取你的账号,甚至于购买商品,虚拟货币转账......造成的问题包括:个人隐私泄露以及财产安全. 二  过程 1  受害者 Bob 在银行有一笔存款,通过对银行的网站发送请求 http://bank.example/withdraw?account=bob&amount=1000000&for=bob2 可以使 Bob 把 1000000 的存款转到

防止跨站请求伪造(CSRF)攻击 和 防重复提交 的方法的实现

CSRF的概率可以参考:http://netsecurity.51cto.com/art/200812/102951.htm 本文介绍的是基于spring拦截器的Spring MVC实现 首先配置拦截器: <mvc:interceptors> <mvc:interceptor> <!-- 匹配的是url路径, 如果不配置或/**,将拦截所有的Controller --> <mvc:mapping path="/xxx/**" /> <

利用Haproxy搭建 HTTP 请求走私(Request smuggling)环境

Haproxy 介绍 HAProxy是一个使用C语言编写的自由及开放源代码软件,其提供高可用性.负载均衡,以及基于TCP和HTTP的应用程序代理. 请求走私(Request smuggling)概念证明 使用下面的haproxy.cfg defaults     mode http     timeout http-keep-alive 10s     timeout connect 5s     timeout server 60s     timeout client 30s     tim

SQL 注入、XSS 攻击、CSRF 攻击

SQL 注入.XSS 攻击.CSRF 攻击 SQL 注入 什么是 SQL 注入 SQL 注入,顾名思义就是通过注入 SQL 命令来进行攻击,更确切地说攻击者把 SQL 命令插入到 web 表单或请求参数的查询字符串里面提交给服务器,从而让服务器执行编写的恶意的 SQL 命令. 对于 web 开发者来说,SQL 注入已然是非常熟悉的,而且 SQL 注入已经生存了 10 多年,目前已经有很成熟的防范方法,所以目前的 web 应用都很少会存在漏洞允许进行 SQL 注入攻击. 除非是入门开发人员,在开发

前端学HTTP之web攻击技术

前面的话 简单的HTTP协议本身并不存在安全性问题,因此协议本身几乎不会成为攻击的对象.应用HTTP协议的服务器和客户端,以及运行在服务器上的Web应用等资源才是攻击目标.本文将详细介绍攻击web站点的手段 总括 与最初的设计相比,现今的Web网站应用的HTTP协议的使用方式已发生了翻天覆地的变化.几乎现今所有的Web网站都会使用会话(session)管理.加密处理等安全性方面的功能,而HTTP协议内并不具备这些功能 从整体上看,HTTP就是一个通用的单纯协议机制.因此它具备较多优势,但是在安全

DDoS攻击与防御(1)

分布式拒绝服务攻击的精髓是,利用分布式的客户端,向服务提供者发起大量看似合法的请求,消耗或长期占用大量资源,从而达到拒绝服务的目的.从不同的角度看,分布式拒绝服务攻击的方法有不同的分类标准.依据消耗目标资源的不同,可分为攻击网络带宽资源.攻击系统资源和攻击应用资源三类.依据攻击数据包发送的频率和速度来划分,又可以分为洪水攻击和慢速攻击. 1.攻击网络带宽资源无论是服务器的网络接口带宽,还是路由器.交换机等互联网基础设施,其数据包处理能力都是存在着事实上的上限的,当到达或通过的网络数据包数量超过了

Linux之DNS服务器搭建及常见DNS攻击和防御

DNS(Domain Name System,域名系统),因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通过主机名,最终得到该主机名对应的IP地址的过程叫做域名解析(或主机名解析).DNS协议运行在UDP协议之上,使用端口号53. 主机名到IP地址的映射有两种方式: 1)静态映射,每台设备上都配置主机到IP地址的映射,各设备独立维护自己的映射表,而且只供本设备使用: 2)动态映射,建立一套域名解析系统(DNS),只在