在dinic中,我们会发现,dfs中每条边都会遍历至少一遍,那么我们可以把一定不会用到的边删去吗?
答案是当然可以,这就用到了当前弧优化;
其实这个优化在很久很久以前学习欧拉回路的时候就接触到了;
每次增广一条路后可以看做“榨干”了这条路,既然榨干了就没有再增广的可能了。但如果每次都扫描这些“枯萎的”边是很浪费时间的。那我们就记录一下“榨取”到那条边了,然后下一次直接从这条边开始增广,就可以节省大量的时间。这就是 当前弧优化 。
实现方法就是每次dfs时将head数组复制一遍,然后再新数组中跑dfs
#include <bits/stdc++.h> #define int long long using namespace std; struct littlestar{ int to; int nxt; int w; }star[10010]; int head[10010],cur[10010],cnt=1; void add(int u,int v,int w) { star[++cnt].to=v; star[cnt].nxt=head[u]; star[cnt].w=w; head[u]=cnt; } int s,t; queue<int> q; int n; int dep[10010]; bool bfs() { for(int i=1;i<=n;i++){ dep[i]=0; cur[i]=head[i]; } while(q.size()) q.pop(); q.push(s); dep[s]=1; while(q.size()){ int u=q.front(); q.pop(); for(int i=head[u];i;i=star[i].nxt){ int v=star[i].to; if(!dep[v]&&star[i].w){ dep[v]=dep[u]+1; q.push(v); if(v==t) return 1; } } } return 0; } int m; int dinic(int u,int flow) { if(u==t) return flow; int rest=flow,tmp; for(int i=cur[u];i&&rest;i=star[i].nxt){ cur[u]=i; int v=star[i].to; if(dep[v]==dep[u]+1&&star[i].w){ tmp=dinic(v,min(star[i].w,rest)); if(!tmp) dep[v]=0; star[i].w-=tmp; star[i^1].w+=tmp; rest-=tmp; } } return flow-rest; } signed main() { cin>>n>>m>>s>>t; for(register int i=1;i<=m;i++){ int u,v,w; scanf("%d%d%d",&u,&v,&w); add(u,v,w); add(v,u,0); } int maxflow=0; while(bfs()){ int flow; while(flow=dinic(s,LLONG_MAX)) maxflow+=flow; } cout<<maxflow; }
原文地址:https://www.cnblogs.com/kamimxr/p/11607636.html
时间: 2024-10-15 06:47:36