逻辑回归、决策树和支持向量机

逻辑回归、决策树和支持向量机

2015-12-03 CSDN大数据 CSDN大数据

分类问题是我们在各个行业的商业业务中遇到的主要问题之一。在本文中,我们将从众多技术中挑选出三种主要技术展开讨论,逻辑回归(Logistic Regression)、决策树(Decision Trees)和支持向量机(Support Vector Machine,SVM)。

上面列出的算法都是用来解决分类问题(SVM和DT也被用于回归,但这不在我们的讨论范围之内)。我多次看到有人提问,对于他的问题应该选择哪一种方法。经典的也是最正确的回答是“看情况而定!”,这样的回答却不能让提问者满意。确实让人很费神。因此,我决定谈一谈究竟是看什么情况而定。

这个解释是基于非常简化的二维问题,但足以借此来理解读者棘手的更高维度数据。

我将从最重要的问题开始讨论:在分类问题中我们究竟要做什么?显然,我们是要做分类。(这是个严肃的问题?真的吗?)我再来复述一遍吧。为了做分类,我们试图寻找决策边界线或是一条曲线(不必是直线),在特征空间里区分两个类别。

特征空间这个词听起来非常高大上,容易让很多新人犯迷糊。我给你展示一个例子来解释吧。我有一个样本,它包含三个变量:x1, x2和target。target有0和1两种值,取决于预测变量x1和x2的值。我将数据绘制在坐标轴上。

这就是特征空间,观测值分布于其中。这里因为我们只有两个预测变量/特征,所有特征空间是二维的。你会发现两个类别的样本用不同颜色的点做了标记。我希望我们的算法能计算出一条直线/曲线来分离这个类别。

通过目测可知,理想的决策边界(分割曲线)是一个圆。实际决策边界形状的差异则是由于逻辑回归、决策树和支持向量机算法的差异引起的。

先说逻辑回归。很多人对逻辑回归的决策边界都有误解。这种误解是由于大多数时候提到逻辑回归,人们就见到那条著名的S型曲线。

上图所示的蓝色曲线并不是决策边界。它是逻辑回归模型的二元响应的一种变形。逻辑回归的决策边界总是一条直线(或者一个平面,在更高维度上是超平面)。让你信服的最好方法,就是展示出大家都熟知的逻辑回归方程式。

我们做一个简单的假设,F是所有预测变量的线性组合。

上面的等式也可以写作:

当你进行预测的时候,对概率值做一个分数截断,高于截断值的概率为1,否则为0。假设截断值用c表示,那么决策过程就变成了这样:

Y=1 if p>c, 否则0。最后给出的决策边界是F>常数。

F>常数,无非就是一个线性决策边界。我们样本数据用逻辑回归得到的结果将会是这样。

你会发现效果并不好。因为无论你怎么做,逻辑回归方法得到的决策边界总是线性的,并不能得到这里需要的环状边界。因此,逻辑回归适用于处理接近线性可分的分类问题。(虽然可以对变量做变换得到线性可分的结果,但我们在此不讨论这类情况。)

接着我们来看决策树如何处理这类问题。我们都知道决策树是按照层次结构的规则生成的。以我们的数据为例。

如果你仔细思考,这些决策规则x2 |</>| const OR x1 |</>| const 只是用平行于轴线的直线将特征空间切分,如下图所示。

我们可以通过增加树的大小使它生长得更复杂,用越来越多的分区来模拟环状边界。

哈哈!趋向于环状了,很不错。如果你继续增加树的尺寸,你会注意到决策边界会不断地用平行线围成一个环状区域。因此,如果边界是非线性的,并且能通过不断将特征空间切分为矩形来模拟,那么决策树是比逻辑回归更好的选择。

然后我们再来看看SVM的结果。SVM通过把你的特征空间映射到核空间,使得各个类别线性可分。这个过程更简单的解释就是SVM给特征空间又额外增加了一个维度,使得类别线性可分。这个决策边界映射回原特征空间后得到的是非线性决策边界。下图比我的解释更清楚。

你可以看到,一旦样本数据以某种方式增加了一个维度,我们就能用一个平面来分割数据(线性分类器),这个平面映射回原来的二维特征空间,就能得到一个环状的决策边界。

SVM在我们数据集上的效果多棒啊:

注:决策边界并不是这么标准的圆形,但是非常接近了(可能是多边形)。我们为了操作简便,就用圆环代替了。

现在清楚各种区别了吧,但是还有一个问题。也就是说,在处理多维数据时,什么时候该选择何种算法?这个问题很重要,因为若是数据维度大于三,你就找不到简单的方法来可视化地呈现数据。我们将在第二部分讨论这么问题,敬请关注。

时间: 2024-11-06 07:39:51

逻辑回归、决策树和支持向量机的相关文章

浅谈对机器学习算法的一些认识(决策树,SVM,knn最近邻,随机森林,朴素贝叶斯、逻辑回归)

一.决策树 定下一个最初的质点,从该点出发.分叉.(由于最初质点有可能落在边界值上,此时有可能会出现过拟合的问题. 二.SVM  svm是除深度学习在深度学习出现之前最好的分类算法了.它的特征如下: (1)它既可应用于线性(回归问题)分类,也可应用于非线性分类; (2)通过调节核函数参数的设置,可将数据集映射到多维平面上,对其细粒度化,从而使它的特征从二维变成多维,将在二维上线性不可分的问题转化为在多维上线性可  分的问题,最后再寻找一个最优切割平面(相当于在决策数基础上再寻找一个最优解),因此

「数据挖掘入门系列」挖掘建模之分类与预测&ndash;逻辑回归

拿电商行业举例,经常会遇到以下问题: 如果基于商品的历史销售情况,以及节假日.气候.竞争对手等影响因素,对商品的销量进行趋势预测? 如何预测未来一段时间哪些客户会流失,哪些客户可能会成为VIP用户? 如果预测一种新商品的销售量,以及哪种类型的客户会比较喜欢? 除此之外,运营部门需要通过数据分析来了解具有某些特征的客户的消费习惯,管理人员希望了解下一个月的销售收入等,这些都是分类与预测的日志. 分类和预测是预测问题的两种主要类型. 分类主要是预测分类标号(离散值) 预测主要是建立连续值函数模型 挖

机器学习—逻辑回归理论简介

下面是转载的内容,主要是介绍逻辑回归的理论知识,先总结一下自己看完的心得 简单来说线性回归就是直接将特征值和其对应的概率进行相乘得到一个结果,逻辑回归则是这样的结果上加上一个逻辑函数 这里选用的就是Sigmoid函数,在坐标尺度很大的情况下类似于阶跃函数 在确认特征对应的权重值也就是回归系数的时候 最常用的方法是最大似然法,EM参数估计,这个是在一阶导数能够有解的前提下 如果一阶导数无法求得解析值,那么一般选取梯度上升法,通过有限次的迭代过程,结合代价函数更新回归系数至收敛 //////////

从另一个视角看待逻辑回归

摘要 逻辑回归是用在分类问题中,而分类为题有存在两个比较大的方向:分类的结果用数值表是,比如1和0(逻辑回归采用的是这种),或者-1和1(svm采用的),还有一种是以概率的形式来反应,通过概率来说明此样本要一个类的程度即概率.同时分类问题通过适用的场合可以分为:离散和连续,其中决策树分类,贝叶斯分类都是适用离散场景,但是连续场景也可以处理,只是处理起来比较麻烦,而逻辑回归就是用在连续特征空间中的,并把特征空间中的超平面的求解转化为概率进行求解,然后通过概率的形式来找给出分类信息,最后设置一个阈值

逻辑回归算法

使用线性模型进行回归学习,但若要做分类任务该怎么办呢?答案蕴含在广义线性模型中:只需要找一个单调可微的函数将分类任务的真实标记y与线性回归模型的预测值联系起来. 对数几率函数是一个常用的替代函数: 该函数的图像如下图(来源:维基百科): 对数几率函数又称作"sigmoid函数",将z值转化为一个接近0或1的y值. 二.逻辑会回参数求解过程 三.Logistic Regression的适用性 1) 可用于概率预测,也可用于分类. 并不是所有的机器学习方法都可以做可能性概率预测(比如SVM

逻辑回归原理小结

逻辑回归是一个分类算法,它可以处理二元分类以及多元分类.虽然它名字里面有"回归"两个字,却不是一个回归算法.那为什么有"回归"这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里面却残留着回归模型的影子,本文对逻辑回归原理做一个总结. 1. 从线性回归到逻辑回归 我们知道,线性回归的模型是求出输出特征向量Y和输入样本矩阵X之间的线性关系系数\(\theta\),满足\(\mathbf{Y = X\theta}\).此时我们的Y是连续的,所以是回归模型.

Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression &amp; Regularization

原文地址:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machin

机器学习:逻辑回归

************************************** 注:本系列博客是博主学习Stanford大学 Andrew Ng 教授的<机器学习>课程笔记.博主深感学过课程后,不进行总结很容易遗忘,根据课程加上自己对不明白问题的补充遂有此系列博客.本系列博客包括线性回归.逻辑回归.神经网络.机器学习的应用和系统设计.支持向量机.聚类.将维.异常检测.推荐系统及大规模机器学习等内容. ************************************** 逻辑回归 分类(C

逻辑回归要点(个人观点,不一定正确)

不是搞算法的,但最近用到这个,所以按个人的理解总结一下要点,可能有理解上的错误,欢迎指正批评. 目前场景是用于可能性预测. 1.逻辑回归模型计算出来的是相对可能性,而非概率,所以非常适合topN选择等问题:如果用于分类,则其用于分割的阈值通过指标参数确定.总体上来说,更适合求topN. 2.仅能用于线性问题,其实很多数学不是很好的人,对这个理解不深入,在使用Logistic Regression时注意选择和target呈线性关系的feature.预先知道模型非线性时,果断不使用Logistic