cProfile——Python性能分析工具

Python自带了几个性能分析的模块:profile、cProfile和hotshot,使用方法基本都差不多,无非模块是纯Python还是用C写的。本文介绍cProfile。

 例子

import time
def func1():
    sum = 0
    for i in range(1000000):
        sum += i
def func2():
    time.sleep(10)

func1()
func2()

运行

python -m cProfile del.py

运行结果

结果分析
    执行了6个函数,总共花费了10.138s,按着运行函数名字排序为结果输出。

运行脚本

python -m cProfile -o del.out del.py

这里以模块方式直接保存profile结果,可以进一步分析输出结果,运行

python -c "import pstats; p=pstats.Stats(‘del.out‘); p.print_stats()"

结果(随机)

可以设置排序方式,例如以花费时间多少排序

python -c "import pstats; p=pstats.Stats(‘del.out‘); p.sort_stats(‘time‘).print_stats()"

sort_stats支持以下参数:

calls, cumulative, file, line, module, name, nfl, pcalls, stdname, time

pstats模块还支持交互式

时间: 2024-10-06 19:53:43

cProfile——Python性能分析工具的相关文章

Python性能分析工具Profile

Python性能分析工具Profile 代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等.其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序的性能瓶颈.Python 标准模块提供三种 profilers:cProfile,profile 以及 hotshot. p

系统级性能分析工具perf的介绍与使用

测试环境:Ubuntu14.04  on VMWare Kernel:3.13.0-32 系统级性能优化通常包括两个阶段:性能剖析(performance profiling)和代码优化.性能剖析的目标是寻找性能瓶颈,查找引发性能问题的原因及热点代码.代码优化的目标是针对具体性能问题而优化代码或编译选项,以改善软件性能. 在性能剖析阶段,需要借助于现有的profiling工具,如perf等.在代码优化阶段往往需要借助开发者的经验,编写简洁高效的代码,甚至在汇编级别合理使用各种指令,合理安排各种指

Python性能分析指南(未完成)

英文原文:http://www.huyng.com/posts/python-performance-analysis/ 译文:http://www.oschina.net/translate/python-performance-analysis 虽然你所写的每个Python程序并不总是需要严密的性能分析,但是当这样的问题出现时,如果能知道Python生态系统中的许多种工具,这样总是可以让人安心的. 分析一个程序的性能可以归结为回答4个基本的问题: 1.它运行的有多块? 2.那里是速度的瓶颈?

Android 常用的性能分析工具详解:GPU呈现模式, TraceView, Systrace, HirearchyViewer(转)

此篇将重点介绍几种常用的Android性能分析工具: 一.Logcat 日志 选取Tag=ActivityManager,可以粗略地知道界面Displaying的时间消耗.当我们打开一个Activity的时候,log会打印一串log如下: I/ActivityManager﹕ Displayed xxx.xxx.xxx/TestActivity: +1s272ms (total +3s843ms) 第一个时间表示系统接受到打开的intent到TestActivity界面显示出来的时间1.272秒

Python性能分析

Python性能分析 https://www.cnblogs.com/lrysjtu/p/5651816.html https://www.cnblogs.com/cbscan/articles/3341231.html 使用ipdb 使用profile import profile def profileTest(): Total =1; for i in range(10): Total=Total*(i+1) print Total return Total if __name__ ==

三种Linux性能分析工具的比较

无论是在CPU设计.服务器研发还是存储系统开发的过程中,性能总是一个绕不过去的硬指标.很多时候,我们发现系统功能完备,但就是性能不尽如意,这时候就需要找到性能瓶颈.进行优化.首先我们需要结合硬件特点.操作系统和应用程序的特点深入了解系统内部的运行机制.数据流图和关键路径,最好找出核心模块.建立起抽象模型:接着需要利用各种性能分析工具,探测相关模块的热点路径.耗时统计和占比.在这方面,Linux操作系统自带了多种灵活又具有专对性的工具,此外一些厂家也开源了不少优秀的性能分析工具.下面就结合笔者最近

Java 性能分析工具

如何利用 JConsole观察分析Java程序的运行,进行排错调优 http://jiajun.iteye.com/blog/810150 如何使用JVisualVM进行性能分析 http://jiajun.iteye.com/blog/1180230 全功能的Java剖析工具(profiler) http://www.blogjava.net/mrzhangshunli/archive/2007/08/27/140088.html http://www.cnblogs.com/jayzee/p

.NET 性能分析工具

Download .NET Profiler http://www.yourkit.com/dotnet/download/ dotTrace 5.5 Performance http://www.jetbrains.com/profiler/ .NET 性能分析工具,布布扣,bubuko.com

linux下面的性能分析工具简介

iostat 命令详解 iostat用于输出cpu和磁盘I/O相关的统计信息.命令格式: Usage: iostat [ options ] [ <interval> [ <count> ] ] Options are: [ -c ] [ -d ] [ -N ] [ -n ] [ -h ] [ -k | -m ] [ -t ] [ -V ] [ -x ] [ -y ] [ -z ] [ -j { ID | LABEL | PATH | UUID | ... } [ <devi