强大的异或运算

什么是异或?

Wikipedia的解释:

在逻辑学中,逻辑算符异或(exclusive or)是对两个运算元的一种逻辑析取类型,符号为 XOR 或 EOR 或 ⊕(编程语言中常用^)。但与一般的逻辑或不同,异或算符的值为真仅当两个运算元中恰有一个的值为真,而另外一个的值为非真。转化为命题,就是:“两者的值不同。”或“有且仅有一个为真。”

定义:

1 ⊕ 1 = 0

0 ⊕ 0 = 0

1 ⊕ 0 = 1

0 ⊕ 1 = 1

真值表:

  Y B = 0 B = 1
  A = 0 0 1
  A = 1 1 0

表达式:

Y = A’ · B + A · B’

解释:我使用·作为,我使用+作为,我使用作为(本来应该使用头上一横,但是太难编辑了,就使用了);

异或有什么特性?

根据定义我们很容易获得异或两个特性:

恒等律:X ⊕ 0 = X 归零律:X ⊕ X = 0

然后我们使用真值表可以证明:

(1)交换律

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
A ⊕ B = A‘ · B + A · B‘

B ⊕ A = B‘ · A + B · A‘

因为·与+或两个操作满足交换律,所以:

A ⊕ B = B ⊕ A

(2)结合律

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
<span class="line-number">4</span>
<span class="line-number">5</span>
<span class="line-number">6</span>
<span class="line-number">7</span>
<span class="line-number">8</span>
<span class="line-number">9</span>
<span class="line-number">10</span>
<span class="line-number">11</span>
<span class="line-number">12</span>
<span class="line-number">13</span>
(A ⊕ B) ⊕ C

= (A‘ · B + A · B‘) ⊕ C

= (A‘ · B + A · B‘)‘ · C + (A‘ · B + A · B‘) · C ‘

= ((A‘ · B)‘ · (A · B‘)‘)· C + A‘ · B · C ‘ + A · B‘ · C ‘

= ((A + B‘) · (A‘ + B))· C + A‘ · B · C ‘ + A · B‘ · C ‘

= (A · B + A‘ · B‘) · C + A‘ · B · C ‘ + A · B‘ · C ‘

= A · B · C + A‘ · B‘ · C + A‘ · B · C ‘ + A · B‘ · C ‘

你可以使用同样推导方法得出(请允许我偷懒一下,数学公式敲起来不容易 +_+):

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
A ⊕ (B ⊕ C)

= A · B · C + A‘ · B‘ · C + A‘ · B · C ‘ + A · B‘ · C ‘

证明过程中使用了如下几个方法(·与 +或 ‘否):

·与 +或交换律:

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
A · B = B · A

A + B = B + A

·与 +或结合律:

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
(A · B) · C = A · (B · C)

(A + B) + C = A + (B + C) 

·与 +或分配律:

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
A · (B + C)= A · B + A · C

A + B · C = (A + B) · (A + C)

摩尔定理:

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
(A · B)‘ = A‘ + B‘

(A + B)‘ = A‘ · B‘

结论:

交换律:A ⊕ B = B ⊕ A 结合律:A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C

有了归零率结合律,我们就可以轻松证明:

自反:A ⊕ B ⊕ B = A ⊕ 0 = A

可能这些特性会很顺其自然的理解,但是如果你在解决问题的时候,你可能会忘记异或的这些特性,所以适当的应用可以让我们加深对异或的理解;

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
<span class="line-number">4</span>
A ⊕ 1 = A‘;
A ⊕ 0 = A;
A ⊕ A = 0;
A ⊕ A‘ = 1;

异或有什么神奇之处(应用)?

说明:以下的的异或全部使用符号^

可能你已经被乱七八糟的公式和演算搞的有点烦了,不就是很简单的异或运算吗?还解释的那么复杂,嘿嘿,不要着急,打好了基础,你就站在了巨人的肩膀,让我们开始异或的神奇之旅吧;

(1)快速比较两个值

先让我们来一个简单的问题;判断两个int数字a,b是否相等,你肯定会想到判断a - b == 0,但是如果判断a ^ b == 0效率将会更高,但是为什么效率高呢?就把这个给你当家庭作业吧,考虑下减法是如何实现的; 让我们看看ipv6中的比较;

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
<span class="line-number">4</span>
<span class="line-number">5</span>
<span class="line-number">6</span>
<span class="line-number">7</span>
static inline int ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2)
    {
    return (((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
        (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
        (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
        (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0);
    }

(2)在汇编语言中经常用于将变量置零:xor a,a

(3)我们可以使用异或来使某些特定的位翻转,因为不管是0或者是1与1做异或将得到原值的相反值;

0 ^ 1 = 1

1 ^ 1 = 0

例如:翻转10100001的第6位, 答案:可以将该数与00100000进行按位异或运算;10100001 ^ 00100000 = 10000001

我们给出一段常用的代码:

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
unsigned int a, b, mask = 1 << 6;
a = 0xB1; // 10100001
b = a ^ mask; /* flip the 6th bit */

(4)我们使用异或来判断一个二进制数中1的数量是奇数还是偶数

例如:求10100001中1的数量是奇数还是偶数; 答案:1 ^ 0 ^ 1 ^ 0 ^ 0 ^ 0 ^ 0 ^ 1 = 1,结果为1就是奇数个1,结果为0就是偶数个1; 应用:这条性质可用于奇偶校验(Parity Check),比如在串口通信过程中,每个字节的数据都计算一个校验位,数据和校验位一起发送出去,这样接收方可以根据校验位粗略地判断接收到的数据是否有误

(5)校验和恢复

校验和恢复主要利用的了异或的特性:IF a ^ b = c THEN a ^ c = b 应用:一个很好的应用实例是RAID5,使用3块磁盘(A、B、C)组成RAID5阵列,当用户写数据时,将数据分成两部分,分别写到磁盘A和磁盘B,A ^ B的结果写到磁盘C;当读取A的数据时,通过B ^ C可以对A的数据做校验,当A盘出错时,通过B ^ C也可以恢复A盘的数据。

RAID5的实现比上述的描述复杂多了,但是原理就是使用 异或,有兴趣的同学看下RAID5

(6)经典题目:不使用其他空间,交换两个值

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
a = a ^ b;
b = a ^ b; //a ^ b ^ b = a ^ 0 = a;
a = a ^ b;

这个题目就不用解释了吧,太大众题目了,哈哈,但是非常好的使用的了异或的特性;

(7)面试题:互换二进制数的奇偶位;

题目:写一个宏定义,实现的功能是将一个int型的数的奇偶位互换,例如6的2进制为00000110,(从右向左)第一位与第二位互换,第三位与第四位互换,其余都是0不需要交换,得到00001001,输出应该为9;

思路:我们可以把我们的问题分为三步(难道这也是分治法吗 -。-),第一步,根据原值的偶数位获取到目标值的奇数位,并把不需要的位清零;第二步,根据原值的奇数位获取到目标值的偶数位,并把不需要的位清零;第三步:把上述两个残缺的目标值合并成一个完整的目标值;

代码为:

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
<span class="line-number">4</span>
<span class="line-number">5</span>
<span class="line-number">6</span>
<span class="line-number">7</span>
<span class="line-number">8</span>
<span class="line-number">9</span>
//假设 int 占两个字节,16位;
#include<iostream>
#include<string>
using namespace std;
#define N(n) ((n<<1)&(0xAAAA))|((n>>1)&(0x5555))
void main(){
    int k = N(6);
    cout << k << endl;
}

解释: 1.为简化说明,我们以4位二进制码为例,0xAAAA 我们用 1010 代替;0x5555 我们用 0101 代替; 2.(n<<1)&(1010) 把n先左移1位,再与1010做与运算,只保留移位之后的偶数位的值,奇数位全为0,实际上是只保留了n的奇数位的值,并把它们交换到了偶数位上。比如 n = 0110 , n<<1 = 1100, (n<<1) & 1010 = 1000 ; 3.(n>>1)&(0101) 把n右移一位,再与 0101 做与运算,只保留移位之后的奇数位的值,偶数位全为0,实际是只保留n
的偶数位的值,并把它们交换到对应的奇数位上。n = 0110; n>>1 = 0011; (n>>1) & 0101 = 0001; 4.最后做或运算(相加),得到1001。

(7)最最常出现的面试题:一个整型数组里除了N个数字之外,其他的数字都出现了两次,找出这N个数字;

比如,从{1, 2, 3, 4, 5, 3, 2, 4, 5}中找出单个的数字: 1

让我们从最简单的,找一个数字开始;

题目:(LeetCode 中通过率最高的一道题) Single Number: Given an array of integers, every element appears twice except for one. Find that single one. Note:Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory? 思路
拿到这个题目,本能的你会使用排序(数字文字我们常常需要排序),排序后可以来判断是否数字成对出现,思路很明显,但是排序的算法上限是 O(nlogn),不符合题目要求;

学习了强大的异或,我们可以轻松的使用它的特性来完成这道题目: (1)A ^ A = 0; (2)异或满足交换律、结合律; 所有假设有数组:A B C B C D A 使用异或:

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
<span class="line-number">4</span>
<span class="line-number">5</span>
A ^ B ^ C ^ B ^ C ^ D ^ A
= A ^ A ^ B ^ B ^ C ^ C ^ D
= 0 ^ 0 ^ 0 ^ D
= 0 ^ D
= D

是不是很神奇?时间复杂度为O(n),当然是线性的,空间复杂度O(1)

代码

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
<span class="line-number">4</span>
<span class="line-number">5</span>
<span class="line-number">6</span>
<span class="line-number">7</span>
<span class="line-number">8</span>
<span class="line-number">9</span>
<span class="line-number">10</span>
<span class="line-number">11</span>
<span class="line-number">12</span>
<span class="line-number">13</span>
<span class="line-number">14</span>
class Solution {
public:
    int singleNumber(int A[], int n) {
        //特殊情况1,2
        if(n<=0) return -1;
        if(n==1) return A[0];

        int result = 0;
        for (int i = 0; i < n; i ++) {
            result = result ^ A[i];
        }
        return result;
    }
};

接下来让我们增加一些难度:

题目:一个整型数组里除了个数字之外,其他的数字都出现了两次。请写程序找出这两个只出现一次的数字?

思路: 第一步:肯定还是像我们上面的解法一样,所有数进行异或,不过最终得到的结果是 a 和 b(假设 a 和 b 是落单的数字)两个值的异或结果 aXORb,没有直接得到 a 和 b 的值;

第二步:想办法得到 a 或者 b,假设 aXORb 为 00001001(F肯定不为0),根君 aXORb 的值我们发现,值为1的位(比如从右向左第一位)表示在此位上 a 和 b 的值不同;所以,根据这个特点,我们找出来所有第一位为1的数进行异或,得到的就是 a 或者 b;

第三步:aXORb = a ^ b,假设我们已经找到了 a,根据异或特性,我们知道,b = aXORb ^ a;这样我们就可以找出 b;所以我们只需要循环两次;

这样我们的时间复杂度是 O(n),空间复杂度是 O(1) 代码

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
<span class="line-number">4</span>
<span class="line-number">5</span>
<span class="line-number">6</span>
<span class="line-number">7</span>
<span class="line-number">8</span>
<span class="line-number">9</span>
<span class="line-number">10</span>
<span class="line-number">11</span>
<span class="line-number">12</span>
<span class="line-number">13</span>
<span class="line-number">14</span>
<span class="line-number">15</span>
<span class="line-number">16</span>
<span class="line-number">17</span>
<span class="line-number">18</span>
<span class="line-number">19</span>
<span class="line-number">20</span>
<span class="line-number">21</span>
<span class="line-number">22</span>
<span class="line-number">23</span>
<span class="line-number">24</span>
<span class="line-number">25</span>
<span class="line-number">26</span>
<span class="line-number">27</span>
<span class="line-number">28</span>
<span class="line-number">29</span>
<span class="line-number">30</span>
<span class="line-number">31</span>
<span class="line-number">32</span>
<span class="line-number">33</span>
<span class="line-number">34</span>
<span class="line-number">35</span>
<span class="line-number">36</span>
#include <iostream>
#include <assert.h>
using namespace std;

int getFirstOneBit(int num) //输出 num 的低位中的第一个 1 的位置
{
    return num & ~(num - 1);  // num 与 -num 相与找到
}

void findTwo(int *array, int length){
    int aXORb = 0;
    int firstOneBit = 0;
    int a = 0;
    int b = 0;
    for (int i = 0; i < length; i++) {
        aXORb ^= array[i];
    }
    assert(aXORb != 0); //保证题目要求,有两个single的数字
    firstOneBit = getFirstOneBit(aXORb);
    for (int i = 0; i < length; ++i) {
        if(array[i] & firstOneBit) {
            a ^= array[i];
        }
    }
    b = aXORb ^ a;
    cout << "a: " << a << endl;
    cout << "b: " << b << endl;
}

int main()
{
    int array1[] = {2, 5, 8, 2, 5, 8, 6, 7};
    findTwo(array1, 8);
    return 0;
}

接下来让我们再增加一些难度:

题目:一个整型数组里除了个数字之外,其他的数字都出现了两次。请写程序找出这两个只出现一次的数字?

思路

第一步:肯定还是像我们上面的解法一样,所有数进行异或,不过最终得到的结果是 a、b 和 c(假设 a、b 和 c 是落单的数字)三个值的异或结果 aXORbXORc,没有直接得到 a、b 和 c 的值;

第二步:想办法得到 a、b 和 c 中的一个,让偶们把问题简化一下;

假设一个数组中有3个不同的数字 a、b 和 c,已知 aXORbXORc = a ^ b ^ c ,求 a、b 和 c 。

思路: 1. 根据题目 aXORbXORc ^ a = b ^ c; aXORbXORc ^ b = a ^ c; aXORbXORc ^ c = a ^ b; 因为:(b ^ c) ^ (a ^ c) ^ (a ^ b) = 0; 所以:(aXORbXORc ^ a) ^ (aXORbXORc ^ b) ^ (aXORbXORc ^ c) = 0;

  1. 下一步是关键: 假设 X ^ Y ^ Z = 0,则 X Y Z 三个数的低位第一位为1的位置两个相同,一个不同; 比如 X: 00001000, Y: 00000100, Z: 00001100 Y和Z的低位第一位都是00000100, X的低位第一位是00001000; 这一步可以使用倒推法证明: 已知:三个数的低位第一位为1的位置有三种情况,一种就是全相同,一种就是两个不同,一个不同,一种就是三个不同; (1)如果是全相同,则 X ^ Y ^ Z != 0 (1 ^ 1 ^ 1 = 1),与前提X ^
    Y ^ Z = 0矛盾,不成立; (2)如果三个不同,则 X ^ Y ^ Z != 0 (1 ^ 0 ^ 0 = 1),与前提X ^ Y ^ Z = 0矛盾,不成立; 所以结果是:两个不同,一个不同
  2. (aXORbXORc ^ a) ^ (aXORbXORc ^ b) ^ (aXORbXORc ^ c) = 0; 所以三个数(aXORbXORc ^ a)、(aXORbXORc ^ b) 和 (aXORbXORc ^ c) 的低位第一位为1的位置两个相同,一个不同;那么我们获取到这三个数的低位第一位为1的位置后,进行异或并取低位第一位为1的位置,就可以找到三个中“一个不同”的低位第一位为1的位置,假设这个值为 firstOneBit。
  3. 遍历这三个数(aXORbXORc ^ a)、(aXORbXORc ^ b) 和 (aXORbXORc ^ c),如果发现某个数异或 aXORbXORc 等于 firstOneBit,这个数就是“一个不同”的那个数;
  4. 找到了一个数,剩下的两个数,我们就可以通过上面的方法找出来;

第三步:完成了第二步的简化题,我们回到我们的问题,我们的问题比简化的问题多了一个成对的干扰数据,我们可以使用异或要去除干扰数据(记住,我们这个题目都是用异或i去除干扰数据的);

这样我们的时间复杂度还是 O(n),空间复杂度是 O(1)

代码如下:

<span class="line-number">1</span>
<span class="line-number">2</span>
<span class="line-number">3</span>
<span class="line-number">4</span>
<span class="line-number">5</span>
<span class="line-number">6</span>
<span class="line-number">7</span>
<span class="line-number">8</span>
<span class="line-number">9</span>
<span class="line-number">10</span>
<span class="line-number">11</span>
<span class="line-number">12</span>
<span class="line-number">13</span>
<span class="line-number">14</span>
<span class="line-number">15</span>
<span class="line-number">16</span>
<span class="line-number">17</span>
<span class="line-number">18</span>
<span class="line-number">19</span>
<span class="line-number">20</span>
<span class="line-number">21</span>
<span class="line-number">22</span>
<span class="line-number">23</span>
<span class="line-number">24</span>
<span class="line-number">25</span>
<span class="line-number">26</span>
<span class="line-number">27</span>
<span class="line-number">28</span>
<span class="line-number">29</span>
<span class="line-number">30</span>
<span class="line-number">31</span>
<span class="line-number">32</span>
<span class="line-number">33</span>
<span class="line-number">34</span>
<span class="line-number">35</span>
<span class="line-number">36</span>
<span class="line-number">37</span>
<span class="line-number">38</span>
<span class="line-number">39</span>
<span class="line-number">40</span>
<span class="line-number">41</span>
<span class="line-number">42</span>
<span class="line-number">43</span>
<span class="line-number">44</span>
<span class="line-number">45</span>
<span class="line-number">46</span>
<span class="line-number">47</span>
<span class="line-number">48</span>
<span class="line-number">49</span>
<span class="line-number">50</span>
<span class="line-number">51</span>
<span class="line-number">52</span>
<span class="line-number">53</span>
<span class="line-number">54</span>
<span class="line-number">55</span>
<span class="line-number">56</span>
<span class="line-number">57</span>
<span class="line-number">58</span>
<span class="line-number">59</span>
<span class="line-number">60</span>
<span class="line-number">61</span>
#include <iostream>
#include <assert.h>
using namespace std;

int getFirstOneBit(int num) //输出 num 的低位中的第一个 1 的位置
{
    return num & ~(num - 1);  // num 与 -num 相与找到
}

void findTwo(int *array, int length){
    int aXORb = 0;
    int firstOneBit = 0;
    int a = 0;
    int b = 0;
    for (int i = 0; i < length; i++) {
        aXORb ^= array[i];
    }
    assert(aXORb != 0); //保证题目要求,有两个single的数字
    firstOneBit = getFirstOneBit(aXORb);
    for (int i = 0; i < length; ++i) {
        if(array[i] & firstOneBit) {
            a ^= array[i];
        }
    }
    b = aXORb ^ a;
    cout << "a: " << a << endl;
    cout << "b: " << b << endl;
}

int findOne(int *array, int length) {
    int aXORbXORc = 0;
    int c = 0;
    int firstOneBit = 0;
    for (int i = 0; i < length; ++i) {
        aXORbXORc ^= array[i];
    }

    for (int i = 0; i < length; ++i) {
        firstOneBit ^= getFirstOneBit(aXORbXORc ^ array[i]); //使用异或会排除掉不相干的元素
    }
    // firstOneBit = getFirstOneBit(a ^ b) ^ getFirstOneBit(a ^ c) ^ getFirstOneBit(b ^ c);

    firstOneBit = getFirstOneBit(firstOneBit); //获取到最低位下面要用

    for (int i = 0; i < length; ++i) {
        if (getFirstOneBit(aXORbXORc ^ array[i]) == firstOneBit) {
            c ^= array[i]; //使用异或会排除掉不相干的元素
        }
    }
    cout << "c: " << c << endl;
    return c;
}

int main()
{
    int array1[] = {2, 5, 8, 2, 5, 8, 6, 7, 1};
    int c = findOne(array1, 9);
    int array2[] = {2, 5, 8, 2, 5, 8, 6, 7, 1, c}; //为了更好重用函数,我重新定义了一个数组让大家理解
    findTwo(array2, 10);
    return 0;
}

写这篇文档参考了《离散数学与应用》课本,参考了别人多个博客,如果我参考了你的博客,但没有注明出处,请联系告知,有错误的地方,希望可以指出来,也希望大家有更多的补充,非常感谢。

参考:

http://zh.wikipedia.org/wiki/%E9%80%BB%E8%BE%91%E5%BC%82%E6%88%96

http://yjq24.blogbus.com/logs/41863963.html

http://wzw19191.blog.163.com/blog/static/131135470200992610551971/

http://kapok.blog.51cto.com/517862/129941

http://blog.csdn.net/huxian370/article/details/8024416

http://www.cnblogs.com/Ivony/archive/2009/07/23/1529254.html

http://blog.chinaunix.net/uid-20937170-id-3407361.html

http://blog.csdn.net/yfkiss/article/details/11775569

http://blog.sina.com.cn/s/blog_88c9ddc50101810p.html

http://blog.csdn.net/pathuang68/article/details/7567027

http://blog.csdn.net/qingen1/article/details/12656763

转自:https://www.lijinma.com/blog/2014/05/29/amazing-xor/

时间: 2024-09-30 14:42:57

强大的异或运算的相关文章

HDU 5175 Misaki&#39;s Kiss again (异或运算,公式变形)

Misaki's Kiss again Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 201    Accepted Submission(s): 57 Problem Description After the Ferries Wheel, many friends hope to receive the Misaki's kiss

异或运算的性质及用途

 1.两个数的交换  利用异或运算可以实习一种简单的不使用第三个数的交换方式, 代码如下所示: void swap(int a,int b) { a = a^b; b = a^b; a = a^b; }  原因是:异或运算是它本身的逆运算,故对于两个数或是布尔变量有如下性质: (a XOR b) XOR b = a 补充,异或运算的简单性质: 1. a ⊕ a = 0 2. a ⊕ b = b ⊕ a // 异或运算满足交换律 3. a ⊕ b ⊕ c = a ⊕ (b ⊕ c) = (a ⊕

异或运算实现加密解密

异或运算中,如果某个字符(或数值)x 与 一个数值m 进行异或运算得到y,则再用y 与 m 进行异或运算就可以还原为 x ,因此应用这个原理可以实现数据的加密解密功能. 异或运算在java中通常有两个比较常用的方法,一个是两个变量的互换(不借助第三个变量),一个便是数据的简单加密解密. 两个变量的互换 java运算中,如果要交换两变量的值,通常的做法就是借助第三个临时变量,然后完成操作. 如 public static void main(String[] args) { int[] arr =

网络误区:不用中间变量交换2个变量的value,最高效的是异或运算.

本文记录了不使用中间变量交换2个变量的value,很多的网络留言说是直接异或运算就可以了,而且效率很高,是真的吗? 关于这个问题,网络上面有很多的解释,3种方法,我这里给比较一下各自的优缺点,然后简单分析一下汇编代码,分析代码如下: #include <stdio.h> void swap1(int &a,int &b) { int temp = a; a = b; b = temp; } void swap2(int &a,int &b) { a += b;

异或运算

将a与b的对应位进行异或运算,同为0或者同为1时,对应位结果为0:否则为1.

【Luogu】P1681最大正方形2(异或运算,DP)

题目链接 不得不说attack是个天才.读入使用异或运算,令que[i][j]^=(i^j)&1,于是原题目变成了求que数组的最大相同值. 然而我还是不理解为啥,而且就算简化成这样我也不会做. ai,我太菜了. f[i][j]表示考虑到i,j为止的最大值.当que[i][j]=que[i-1][j]=que[i][j-1]=que[i-1][j-1]的时候,f[i][j]=min(f[i-1][j],min(f[i][j-1],f[i-1][j-1]))+1. #include<cstdi

FEC之异或运算应用

话说为啥FEC需要异或( ^/⊕ )操作呢? 异或:xor 异或运算规则: 0 xor 0 = 0 0 xor 1 = 1 1 xor 0 = 1 1 xor 1 = 0 异或运算特性: 1). a xor a = 0 2). a xor 0 = a 3). (a xor b) xor c = a xor (b xor c) 4). IF a xor b = c THEN a xor c = b    异或的运算特性有两点很好的应用 查找 case 1: 一个数组,除了其中一个元素,其他元素都为

bzoj4103【THUSC2015】异或运算

4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MB Submit: 359  Solved: 188 [Submit][Status][Discuss] Description 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor  yj,每次询问给定矩形区域i∈[u,d],j∈[l,r],找出第k大的Aij

使用异或运算实现中两个变量互换的方法

按位异或运算可以在不引入临时变量的情况下实现两个变量值得互换. int main() {     int a = 10;     int b = 12;     cout<<"a="<<a<<";"<<"b="<<b<<endl;     a = a^b;                                            //异或运算     b = a^