奇异值分解(SVD)

特征值分解是利用矩阵的对角化来完成的:A=Q∧Q-1,但这种分解方法需要满足一个前提条件,即A是方阵。

奇异值分解(SVD)可以对m x n的矩阵进行分解。我们希望找到一个n x n的正交方阵V、一个m x m的正交方阵U和一个m x n的矩阵∑,使得A满足式子AV=U∑。因为V是正交矩阵,所以V是可逆,且V-1=VT,所以AV=U∑又可以写成A=U∑VT。下面分两步来找到V和U。

1)注意到ATA是一个对称方阵,如果存在一个n x n的正交方阵V、一个m x m的正交方阵U和一个m x n的矩阵∑,使得A=U∑VT成立,则有ATA=V∑TUTU∑VT=V(∑T∑)VT。观察式子ATA=V(∑T∑)VT可知,通过对对称方阵ATA进行特征值分解(对角化),可以得到等式右侧的V(∑T∑)VT,其中V的列向量组为对称方阵ATA的特征向量组,∑T∑为对角矩阵,其对角线上的元素为ATA的特征值。如下图所示,根据∑T∑的性质,可以推出∑:

图中的σi称为矩阵A的奇异值。

2)经过1)之后,我们已经找到了一种方法来求取V和∑,但在我们希望A满足的式子A=U∑VT中,还有U未知。为了求U,用AT右乘式子A=U∑VT,得到AAT=U∑VT V∑TUT。因为V是正交方阵,所以VTV=I,AAT=U∑∑TUT。注意到AAT同样是对称方阵,类似于1),我们可以通过对对称方阵AAT进行特征值分解(对角化),得到等式右侧的U∑∑TUT,其中U的列向量组为对称方阵AAT的特征向量组,∑∑T为对角矩阵,其对角线上的元素为AAT的特征值。注意到这里的∑和1)中求得的∑是同一个矩阵,不必惊讶于这一结论,因为根据定理,我们知道AAT与AAT的具有相同的特征值。

至此,我们完成了对一个m x n矩阵A的奇异值分解过程。

时间: 2024-10-05 23:09:28

奇异值分解(SVD)的相关文章

奇异值分解(SVD) --- 几何意义 (转载)

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(S

[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value decomposition),翻译成中文就是奇异值分解.SVD的用处有很多,比如:LSA(隐性语义分析).推荐系统.特征压缩(或称数据降维).SVD可以理解为:将一个比较复杂的矩阵用更小更简单的3个子矩阵的相乘来表示,这3个小矩阵描述了大矩阵重要的特性. 1.1奇异值分解的几何意义(因公式输入比较麻烦

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计

奇异值分解(SVD)原理详解及推导

声明:转自http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SVD不

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题.不过我想顺便多学习一些有关 SVD 的知识.所以就没直接使用 gsl_fit_linear 函数. SVD

【简化数据】奇异值分解(SVD)

[简化数据]奇异值分解(SVD) @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/42214205 1.简介 奇异值分解(singular Value Decomposition),简称SVD,线性代数中矩阵分解的方法.假如有一个矩阵A,对它进行奇异值分解,可以得到三个矩阵: 这三个矩阵的大小: 矩阵sigma(即上图U和V中间的矩阵)除了对角元素不为0,其他元素都为0,并且对角元素是从大到小排列的,前面的元

奇异值分解(SVD) --- 几何意义

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(SVD

机器学习——降维(主成分分析PCA、线性判别分析LDA、奇异值分解SVD、局部线性嵌入LLE)

机器学习--降维(主成分分析PCA.线性判别分析LDA.奇异值分解SVD.局部线性嵌入LLE) 以下资料并非本人原创,因为觉得石头写的好,所以才转发备忘 (主成分分析(PCA)原理总结)[https://mp.weixin.qq.com/s/XuXK4inb9Yi-4ELCe_i0EA] 来源:?石头?机器学习算法那些事?3月1日 主成分分析(Principal components analysis,以下简称PCA)是最常用的降维方法之一,在数据压缩和消除冗余方面具有广泛的应用,本文由浅入深的

自适应滤波:奇异值分解SVD

作者:桂. 时间:2017-04-03  19:41:26 链接:http://www.cnblogs.com/xingshansi/p/6661230.html 声明:欢迎被转载,不过记得注明出处哦~ [读书笔记10] 前言 广义逆矩阵可以借助SVD进行求解,这在上一篇文章已经分析.本文主要对SVD进行梳理,主要包括: 1)特征向量意义: 2)特征值分解与SVD: 3)PCA与SVD: 内容为自己的学习记录,其中多有借鉴他人之处,最后一并给出链接. 一.特征向量 第一反应是:啥是特征向量?为什