【经典算法——查找】二分查找

  二分查找又称为折半查找,仅适用于事先已经排好序的顺序表。其查找的基本思路:首先将给定值K,与表中中间位置元素的关键字比较,若相等,返回该元素的存储位置;若不等,这所需查找的元素只能在中间数据以外的前半部分或后半部分中。然后在缩小的范围中继续进行同样的查找。如此反复直到找到为止。算法如下:

  

 1 template<typename T>
 2 int BinarySearch(vector<T> &data, T key) {
 3     int low = 0, high = data.size() - 1;
 4     while (low <= high) {
 5         int mid = low + (high - low) / 2;
 6         if (data[mid] == key) {
 7             return mid;
 8         } else if (data[mid] > key) {
 9             high = mid - 1;
10         } else {
11             low = mid + 1;
12         }
13     }
14
15     return -1;
16 }

  因为二分查找需要方便地定位查找区域,所以适合二分查找的存储结构必须具有随机存储的特性。因此,该查找方法仅适合于线性表的顺序存储结构,不适合链式存储结构,且要求元素按关键字有序排列。

判定树:

  二分查找的过程可以用下图表示,称为判定树。树中每个圆形节点表示一个纪录,节点中的值表示为该记录的关键字值:树中最下面叶节点都是方形的,它表示查找不成功的情况。从判定树中可以看出,查找成功时查找的查找长度为从根节点到目的节点的路径上的节点数,而查找不成功时的查找长度为从根节点到对应失败节点的父节点的父节点路径上的节点数;每个节点值均大于其左子节点值,且均小于右子节点值。若有序序列有n个元素,这对应的判定树有n个圆形的非叶节点和n+1个方形的叶节点。

  

  上图中,n个圆形节点(代表有序序列有n个元素)构成的树的深度与n个节点完全二叉树的深度(高度)相等,均为⌊log2n⌋+1或⌈log2(n+1)⌉

  二分查找的时间复杂度为O(log2N),比顺序查找的效率高。

  由上述分析可知,用二分查找到给定值或查找失败的比较次数最多不会超过树的高度。查找成功与不成功,最坏的情况下,都需要比较⌊log2n⌋+1次。

二分查找的优点和缺点
  虽然二分查找的效率高,但是要将表按关键字排序。而排序本身是一种很费时的运算。既使采用高效率的排序方法也要花费O(nlgn)的时间。
  二分查找只适用顺序存储结构。为保持表的有序性,在顺序结构里插入和删除都必须移动大量的结点。因此,二分查找特别适用于那种一经建立就很少改动、而又经常需要查找的线性表。
  对那些查找少而又经常需要改动的线性表,可采用链表作存储结构,进行顺序查找。链表上无法实现二分查找。

相关题目:

  1. http://www.cnblogs.com/vincently/p/4122528.html

  2. http://www.cnblogs.com/vincently/p/4122676.html

  3.《剑指offer》面试题8

相关资料:

  1.http://www.zhihu.com/question/22422613

  2.http://www.cppblog.com/converse/archive/2009/10/05/97905.html

  3.http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=binarySearch

  4.http://www.cnblogs.com/bhlsheji/p/4211826.html

参考资料:

  1.《王道程序员求职宝典》

  2. http://student.zjzk.cn/course_ware/data_structure/web/chazhao/chazhao9.2.2.1.htm

  

时间: 2024-11-08 19:18:21

【经典算法——查找】二分查找的相关文章

查找算法:二分查找、顺序查找

08年9月入学,12年7月毕业,结束了我在软件学院愉快丰富的大学生活.此系列是对四年专业课程学习的回顾,索引参见:http://blog.csdn.net/xiaowei_cqu/article/details/7747205 查找算法 查找算法是在存在的序列(list) 中查找特定的目标(target),要求序列中每个记录必须与一个关键词(key)关联才能进行查找. 查找算法通常需要两个输入: 1.被查找的序列 2.要查找的关键词 查找算法的输出参数和返回值: 1.返回类型为 Error_co

【数据结构与算法】二分查找

基本思想 首先将给定的值K与表中中间位置元素比较,若相等,则查找成功:若不等,则所需查找的元素只能在中间数据以外的前半部分或者后半部分,缩小范围后继续进行同样的查找,如此反复,直到找到为止. 代码实现 /** * 源码名称:BinarySearch.java * 日期:2014-08-14 * 程序功能:二分查找 * 版权:[email protected] * 作者:A2BGeek */ public class BinarySearch { public static int binaryS

算法系列&lt;二分查找&gt;

二分查找又称折半查找,是针对有序顺序表的查找,前提:数据是顺序存储的,已经按照关键词进行升序排序.查找成功返回索引值,查找不成功返回-1. 下面用java来实现二分查找算法: /** * 二分查找:针对已排好序的序列,查找成功返回所在位置的索引值,查找不成功返回-1 * 查找的最好时间复杂度:O(1),最坏时间复杂度O(logN),平均时间复杂度:O(logN) * 测试case: * case1:{1} 查找1 * case2:{1} 查找2 * case3:{} 查找1 * case4:{1

算法学习——二分查找(折半查找)

算法学习--二分查找 注意点 1. 二分查找的前提是有序的数组 2. 建议使用[start,end)的区间寻找,符合规范 3. 使用的是递归法 递归的人口 private static int find(int[] temp, int x) { //如果要查找的数x比数组的最后一个数要大,则找不到数值,返回-1 if (x > temp[temp.length - 1]) { return -1; } return find(temp, 0, temp.length, x);//进入递归 } 递

常见算法之二分查找

1.算法思想 二分查找采用分而治之的思想.要求被查找的集合必须是有序的.主要思路: 根据起始位置和结束位置,确定中间位置. 拿目标值与中间位置的值做比较,假如目标值大于中间位置取值,则起始位置为中间位置加1. 假如目标值小于中间位置取值,则结束位置为中间位置减1. 直至起始位置小于等于结束位置,找到目标值的位置即索引. 2.代码实现 2.1.基于Python3.x实现 代码如下: 1 #coding:utf-8 2 def half_search(lst,key): 3 start = 0 4

算法:二分查找(基础)

二分查找是一个基础的算法,也是面试中常考的一个知识点. 基础二分查找 二分查找就是将查找的键和子数组的中间键做比较,如果被查找的键小于中间键,就在左子数组继续查找:如果大于中间键,就在右子数组中查找,否则中间键就是要找的元素. /** * 二分查找,找到该值在数组中的下标,否则为-1 */ static int binarySerach(int[] array, int key) { int left = 0; // 左边开始位置的下标 int right = array.length - 1;

9-2-折半查找/二分查找-查找-第9章-《数据结构》课本源码-严蔚敏吴伟民版

课本源码部分 第9章  查找 - 折半查找/二分查找 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接??? <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明        课本源码合辑  链接??? <数据结构>课本源码合辑        习题集全解析  链接??? <数据结构题集>习题解析合辑        本源码引入的文件  链接? Base.c        相关测试数据下载  链接? 数据包      

leetcode旋转数组查找 二分查找的变形

http://blog.csdn.net/pickless/article/details/9191075 Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2). You are given a target value to search. If found in the array return it

查找 —— 二分查找[递归+非递归]

二分查找 二分查找是对一组有序序列进行查找.根据要查找的k和序列中间元素比较,动态的移动查找范围.以对折的方式缩小查找范围. 递归方式: def binarySearch(A,left,right,k): if left<= right: mid =(left+right)//2 if A[mid] == k: return mid if A[mid]>k: return binarySearch(A,left,mid-1,k) #此处要返回函数运行结果而不是仅仅调用函数 else: retu

PHP实现文本快速查找 - 二分查找

PHP实现文本快速查找 - 二分查找法 起因 先说说事情的起因,最近在分析数据时经常遇到一种场景,代码需要频繁的读某一张数据库的表,比如根据地区ID获取地区名称.根据网站分类ID获取分类名称.根据关键词ID获取关键词等.虽然以上需求都可以在原始建表时,通过冗余数据来解决.但仍有部分业务存的只是关联表的ID,数据分析时需要频繁的查表. 所读的表存在共同的特点 数据几乎不会变更 数据量适中,从一万到100多万,如果全加载到内存也不太合适. 纠结的地方 在做数据分析时,需要十分频繁的读这些表,每秒有可