线程优先级抢占实验【RT-Thread学习笔记 3】

同时处于就绪状态的线程,优先级高的先执行。

高优先级就绪时,低优先级任务让出CPU,让高优先级任务先执行。

创建两个任务函数:

//线程优先级抢占
void thread1_entry(void *parameter)
{
    rt_uint32_t count = 0;
    while(1)
    {
        for(;;count++)
        {
            rt_thread_delay(3*RT_TICK_PER_SECOND); //等三秒输出一次
            rt_kprintf("count = %d\n",count);
        }
    }
}
void thread2_entry(void *parameter)
{
    rt_tick_t tick;
    rt_uint32_t i = 0;
    for(i = 0;;i++)
    {
        tick = rt_tick_get();
        rt_thread_delay(RT_TICK_PER_SECOND);  //等疫苗输出一次
        rt_kprintf("tick = %d\n",tick);
    }
}

启动他们:

void rt_thread_test(void)
{
    //线程抢占实验
    result= rt_thread_init(&thread1,"thread1",thread1_entry,RT_NULL,thread1_stack,512,10,10);
    if(result == RT_EOK)
    {
        rt_thread_startup(&thread1);
    }

    if(RT_EOK == rt_thread_init(&thread2,"thread2",thread2_entry,RT_NULL,thread2_stack,512,10,10))
    {
        rt_thread_startup(&thread2);
    }
}

因为更高的优先级,thread1率先得到执行,随后它调用延时,时间为3个系统tick,于是thread2得到执行。可以从打印结果中发现一个规律, 在第一次thread2了打印两次thread1会打印一次之后,接下来的话thread2每打印三次thread1会打印一次。对两个线程的入口程序进 行分析可以发现,在thread1 3个系统tick的延时里,thread2实际会得到三次执行机会,但显然在thread1的第一个延时内thread2第三次执行并没有执行结束,在第 三次延时结束以后,thread2本应该执行第三次打印计数的,但是由于thread1此时的延时也结束了,而其优先级相比thread2要高,所以抢占 了thread2的执行而开始执行。当thread1再次进入延时时,之前被抢占的thread2的打印得以继续,然后在经过两次1个系统tick延时和 两次打印计数后,在第三次系统tick结束后又遇到了thread1的延时结束,thread1再次抢占获得执行,所以在这次thread1打印之 前,thread2执行了三次打印计数。

时间: 2025-01-20 03:45:29

线程优先级抢占实验【RT-Thread学习笔记 3】的相关文章

Boost Thread学习笔记二

除了thread,boost::thread另一个重要组成部分是mutex,以及工作在mutex上的boost::mutex::scoped_lock.condition和barrier,这些都是为实现线程同步提供的. mutexboost提供的mutex有6种:boost::mutexboost::try_mutexboost::timed_mutexboost::recursive_mutexboost::recursive_try_mutexboost::recursive_timed_m

Boost Thread学习笔记

thread自然是boost::thread库的主 角,但thread类的实现总体上是比较简单的,前面已经说过,thread只是一个跨平台的线程封装库,其中按照所使用的编译选项的不同,分别决定使用 Windows线程API还是pthread,或者Macintosh Carbon平台的thread实现.以下只讨论Windows,即使用 BOOST_HAS_WINTHREADS的情况.thread类提供了两种构造函数:thread::thread()thread::thread(const func

Boost Thread学习笔记三

下面先对condition_impl进行简要分析.condition_impl在其构造函数中会创建两个Semaphore(信号量):m_gate.m_queue,及一个Mutex(互斥体,跟boost::mutex类似,但boost::mutex是基于CriticalSection<临界区>的):m_mutex,其中:m_queue相当于当前所有等待线程的等待队列,构造函数中调用CreateSemaphore来创建Semaphore时,lMaximumCount参数被指定为(std::nume

Boost Thread学习笔记四

barrierbarrier类的接口定义如下: 1 class barrier : private boost::noncopyable   // Exposition only 2 { 3 public: 4   // construct/copy/destruct 5   barrier(size_t n); 6   ~barrier(); 7  8   // waiting 9   bool wait();10 }; barrier类为我们提供了这样一种控制线程同步的机制:前n - 1次调

Boost Thread学习笔记五

多线程编程中还有一个重要的概念:Thread Local Store(TLS,线程局部存储),在boost中,TLS也被称作TSS,Thread Specific Storage.boost::thread库为我们提供了一个接口简单的TLS的面向对象的封装,以下是tss类的接口定义: class tss{public:    tss(boost::function1<void, void*>* pcleanup);    void* get() const;    void set(void*

RT Thread学习历程(1):串口乱码问题

因为学习实时系统,最近接触到RT Thread. 把RT Thread官网上的示例代码烧录到STM32的板子上之后,在串口软件上接收到的全是乱码,一开始以为是串口软件的问题,换了2个软件之后情况都一样,最后发现是晶振的问题,我用的是STM32F407VGT6,晶振要设为8MHz,代码相应的设置晶振的部分也要修改.

Thread学习笔记

1.   WMI(Windows Management Instrumentation,Windows 管理规范)是一项核心的 Windows 管理技术:用户可以使用 WMI 管理本地和远程计算机. 2.   嵌入式Chromium框架,它主要目的是开发一个基于Google Chromium的Webbrowser控件; 3.   HtppWebResponse类的作用用于在客户端获取服务器返回的相应信息 HttpResponse 类用于在服务器设置客户端相应的信息 参考网址: http://ww

thread学习笔记--BackgroundWorker 类

背景: 在 WinForms 中,有时要执行耗时的操作,比如统计某个磁盘分区的文件夹或者文件数目,如果分区很大或者文件过多的话,处理不好就会造成“假死”的情况,或者报“线程间操作无效”的异常,或者在该操作未完成之前操作用户界面,会导致用户界面停止响应. ----比如现在学习的MES UI中要查询数据量较大的记录显示在Spread中就可以用BackgroundWorker 类! 解决的方法就是新开一个线程,把耗时的操作放到线程中执行,这样就可以在用户界面上进行其它操作. 如果不借助Thread编程

【转】 Pro Android学习笔记(七四):HTTP服务(8):使用后台线程AsyncTask

目录(?)[-] 5秒超时异常 AsyncTask 实现AsyncTask抽象类 对AsyncTask的调用 在哪里运行 其他重要method 文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件,转载须注明出处:http://blog.csdn.net/flowingflying/ 之前,我们直接在activity中执行http通信,在通信过程中可能会出现连接超时.socket超时等情况,超时阈值一般是秒级,例如AndroidHttpClient中设置的20秒,如果出现超时,就