《PRML》Logistic回归的IRLS求解

时间: 2024-10-06 21:35:18

《PRML》Logistic回归的IRLS求解的相关文章

梯度上升法求解Logistic回归

回顾上次内容:http://blog.csdn.net/acdreamers/article/details/27365941 经过上次对Logistic回归理论的学习,我们已经推导出取对数后的似然函数为 现在我们的目的是求一个向量,使得最大.其中 对这个似然函数求偏导后得到 根据梯度上升算法有 进一步得到 我们可以初始化向量为0,或者随机值,然后进行迭代达到指定的精度为止. 现在就来用C++一步一步实现Logistic回归,我们对文章末尾列出的数据进行训练. 首先,我们要对文本进行读取,在训练

Logistic回归

Logistic回归 主要思想: 根据训练集找到一个适合的预测函数(线性函数),一般用h表示,该函数就是我们需要找的分类函数,用它来预测输入数据的分类. 构造一个Cost(损失函数),该函数为每个输入数据的预测类别(h)与真实数据的类别(y)之间的偏差,可以以二者间的差值,即(h-y)或其他形式来计算偏差.由于需要综合考虑所有训练数据的损失,需要将数据的损失求和或求平均,表示所有训练数据预测出的类别与实际类别的偏差,将Cost求和或者求平均,记为J(θ),表示所有训练数据预测值与实际值得偏差.

Logistic回归模型和Python实现

回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离散的自变量映射到连续的实数域. 模型数学形式: 引入损失函数(loss function,也称为错误函数)描述模型拟合程度: 使J(w)最小,求解优化问题得到最佳参数. Logistic回归 logistic回归(Logistic regression 或 logit regression)有时也被

对线性回归,logistic回归和一般回归的认识

假设有一个房屋销售的数据如下:这个表类似于北京5环左右的房屋价钱,我们可以做出一个图,x轴是房屋的面积.y轴是房屋的售价,如下: 如果来了一个新的面积,假设在销售价钱的记录中没有的,我们怎么办呢? 我们可以用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上这个点对应的值返回.如果用一条直线去拟合,可能是下面 的样子:绿色的点就是我们想要预测的点. 首先给出一些概念和常用的符号. 房屋销售记录表:训练集(training set)或者训练数据(training data)

机器学习实战3:逻辑logistic回归:病马实例

本文介绍logistic回归,和改进算法随机logistic回归,及一个病马是否可以治愈的案例.例子中涉及了数据清洗工作,缺失值的处理. 一 引言 1 sigmoid函数,这个非线性函数十分重要,f(z) = 1 / (1 + e^(-z) ), 画图如下: 这个函数可以很好的把数轴上的值映射到0,1区间,所以很好的解决了分类问题.下面是代码: def sigmoid(inX): return 1.0/(1+exp(-inX)) 2 梯度上升法是我们常用的最优化方法,公式.就是说沿这梯度方向迭代

5 Logistic回归(二)

5.2.4 训练算法:随机梯度上升 梯度上升算法:在每次更新回归系数时都需要遍历整个数据集,在数十亿样本上该算法复杂度太高. 改进方法:随机梯度上升算法:一次仅用一个样本点更新回归系数. 由于可以在新样本到来时对分类器进行增量式更新,因此随机梯度上升算法是一个在线学习算法.与“在线学习”相对应,一次处理所有数据被称作“批处理”. #5-3:随机梯度上升算法 def stocGradAscent0(dataMatrix, classLabels): m, n = shape(dataMatrix)

机器学习(4)之Logistic回归

机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一组离散的,比如y只能取{0,1}. 假设一组样本为这样如图所示,如果需要用线性回归来拟合这些样本,匹配效果会很不好.对于这种y值只有{0,1}这种情况的,可以使用分类方法进行. 假设,且使得 其中定义Logistic函数(又名sigmoid函数): 下图是Logistic函数g(z)的分布曲线,当z

Logistic回归Cost函数和J(θ)的推导----Andrew Ng【machine learning】公开课

最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法到代码跳跃的幅度有点大,作者本人也说了,这里略去了一个简单的数学推导. 那么其实这个过程在Andrew Ng的机器学习公开课里也有讲到.现在回忆起来,大二看Andrew的视频的时候心里是有这么一个疙瘩(Andrew也是跳过了一步推导) 那么这里就来讲一下作者略去了怎样的数学推导,以及,怎么推导. 在此之前,先

Logistic 回归

Logistic回归是目前最常用的一种分类算法.之前讨论了线性回归 http://www.cnblogs.com/futurehau/p/6105011.html,采用线性回归是不能解决或者说不能很好解决分类问题的,很直观的一个解释如下图所示,这里介绍Logistic回归. 一.Logistic 回归模型 1.1 目标函数: 1.2 ML准则推导代价函数 似然函数: 对数似然函数及其求导: 1.3 代价函数: 在线性回归中,我们得到代价函数,但是在Logistic 回归中,由于h(x)是一个复杂