二分法求多项式单根

<pre name="code" class="cpp">/*
二分法求多项式单根(20)

二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,
即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0。

二分法的步骤为:

检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a, (a+b)/2],令b=(a+b)/2,重复循环;
本题目要求编写程序,计算给定3阶多项式f(x)=a3x3+a2x2+a1x+a0在给定区间[a, b]内的根。

输入格式:

输入在第1行中顺序给出多项式的4个系数a3、a2、a1、a0,在第2行中顺序给出区间端点a和b。
题目保证多项式在给定区间内存在唯一单根。

输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。

输入样例:
3 -1 -3 1
-0.5 0.5
输出样例:
0.33

*/

#include<iostream>
#include<sstream>
#include<string>
using namespace std;

void Input(double a[4], double& left, double& right)
{
    string line;
    getline(cin, line, '\n');
    istringstream s1(line);
    int i = 0;
    while(s1 >> a[i++]);

    line = "";
    getline(cin, line, '\n');
    istringstream s2(line);
    s2 >> left;
    s2 >> right;
}

double F(double a[4], double x)
{
    return a[0] * x*x*x + a[1] * x*x + a[2] * x + a[3];
}

void GetExpRoot(double a[4], double left, double right)
{
    double mid;
    double MID, LEFT= F(a, left), RIGHT = F(a, right); 

    mid = (left + right) / 2;
    MID = F(a, mid);

    // DBL_EPSILON 是双精度数的最小误差
    // FLT_EPSILON 是单精度数的最小误差
    // 均在 float.h 中定义,Linux 中没有
    if(MID > -DBL_EPSILON && MID < DBL_EPSILON)
    {
        // 注意此处不宜用 return mid; 方法,因为这是递归函数
        printf("%.2f\n",mid);
        return;
    }
    else if( MID*LEFT > 0)
    {
        left = mid;
        GetExpRoot(a, left, right);
    }
    else if(MID*RIGHT > 0)
    {
        right = mid;
        GetExpRoot(a, left, right);
    }

}

void Run()
{
    double a[4];
    double left, right;
    Input(a, left, right);
    GetExpRoot(a, left, right);
}

int main(void)
{
    Run();
    return 0;
}
				
时间: 2024-10-06 20:26:13

二分法求多项式单根的相关文章

中国大学MOOC-陈越、何钦铭-数据结构基础习题集 03-1. 二分法求多项式单根

03-1. 二分法求多项式单根(20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 杨起帆(浙江大学城市学院) 二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2): 如

循环-08. 二分法求多项式单根(20)

1 #include<iostream> 2 #include<cmath> 3 #include<iomanip> 4 using namespace std; 5 double a3,a2,a1,a0; 6 double f(double x){ 7 return a3*pow(x,3)+a2*pow(x,2)+a1*x+a0; 8 } 9 int main(){ 10 double a,b,t=0.001; 11 cin>>a3>>a2&g

*循环-08. 二分法求多项式单根

1 /* 2 * Main.c 3 * C8-循环-08. 二分法求多项式单根 4 * Created on: 2014年7月26日 5 * Author: Boomkeeper 6 *****部分通过******** 7 */ 8 #include <stdio.h> 9 #include <math.h> 10 11 float a3 = 0, a2 = 0, a1 = 0, a0 = 0; 12 13 double func(double x) { 14 return (a3

03-树1. 二分法求多项式单根

二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则如果f(a)f(b)<0,则计算中点的值f((a+b)/2):如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根:否则如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,重复循环:如果f((a+b)/2)与

03-1. 二分法求多项式单根

二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2): 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根:否则 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,重复循环:

03-1. 二分法求多项式单根(PAT)

二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2): 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根:否则 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,重复循环:

PAT03-1. 二分法求多项式单根(20)

链接:点击打开链接 题意: 二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2): 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根:否则 如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=

PAT-《C/C++/Java/Pascal 程序设计基础》习题集-循环-08(MOOC3-1)二分法求多项式单根

首先粘一下题目: 二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则如果f(a)f(b)<0,则计算中点的值f((a+b)/2):如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根:否则如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2, b],令a=(a+b)/2,

PAT - JAVA-5-18 二分法求多项式单根 (20分)

二分法求函数根的原理为:如果连续函数f(x)f(x)在区间[a, b][a,b]的两个端点取值异号,即f(a)f(b)<0f(a)f(b)<0,则它在这个区间内至少存在1个根rr,即f(r)=0f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2(a+b)/2:否则 如果f(a)f(b)<0f(a)f(b)<0,则计算中点的值f((a+b)/2)f((a+b)/2): 如果f((a+b)/2)f((a+b)/2)正好为0,则(a+b)