C#:图解值类型,引用类型,栈,堆,ref,out [转]

程序执行的原理

要彻底搞明白那一堆概念及其它们之间的关系似乎并不是一件容易的事,这是因为大部分C#程序员并不了解托管堆(简称“堆”)和线程栈(简称“栈”),或者知道它们,但了解得并不深入,只知道:引用类型保存在托管堆里,而值类型“通常”保存在栈里。要搞明白那一堆概念的关系,我认为先要明白程序执行的基本原理,从而理解栈和托管堆的作用,才能理清它们的关系。考虑下面代码,Main调用Method1,Method1调用Method2:


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

class Program

{

    static void Main(string[] args)

    {

        var num = 120;

        Method1(num);

    }

    static void Method1(int num)

    {

        var num2 = num + 250;

        Method2(num2);

        Console.WriteLine(num);

    }

    static void Method2(int i)

    {

        Console.WriteLine(i);

    }

}

大家都知道Windows程序通常是多个线程的,这里不考虑多线程的问题。程序由Main方法进入开始执行,这时这个(主)线程会分配得到一个1M大小的只属于它自己的线程栈。这1M的的栈空间用于向方法传递参数,定义局部变量。所以在Main方法进入Method1前,大家心理面要有一个”内存图“:把num压入线程栈,如下图:

接着把num作为参数传入Method1方法,同样在Method1内定义一个局部变量num2,调用加方法得到最后的值,所以在进入Method2前,“内存图”如下,num是参数,num2是局部变量

接着调用Method2的过程雷同,然后退出Method2方法,回到上图的样子,再退出Method1方法,再回到第一副图的样子,然后退出程序,整个过程如下图:

所以去除那些if,for,多线程等等概念,只保留对象内存分配相关概念的话,程序的执行可以简单总结为如下:

程序由Main方法进入执行,并不断重复着“定义局部变量,调用方法(可能会传参),从方法返回”,最后从Main方法退出。在程序执行过程中,不断压入参数和局部变量到线程栈里,也不断的出栈。

注意,其实压入栈的还有方法的返回地址等,这里忽略了。

引用类型和堆

上面的例子我只用了一种简单的int值类型,目的是为了只关注线程栈的压栈(生长)和出栈(消亡)。很明显C#还有种引用类型,引入引用类型,再考虑上面的问题,看下面代码:


1

2

3

4

5

6

7

8

9

10

11

12

static void Main(string[] args)

{

    var user = new User { Age = 15 };

    var num = 23;

    Console.WriteLine(user.Age);

    Console.WriteLine(num);

}

class User

{

    public int Age;

}

我想很多人都应该知道,这时应该引入托管堆的概念了,但这里我想跟上面一样,先从栈的角度去考虑问题,所以在调用WriteLine前,“内存图”应该是这样的(地址是乱写的):

这也就是人们常说的:对于引用类型,栈里保存的是指向在堆里的实例对象的地址(指针,引用)。既然只是个地址,那么要获取一个对象的实例应该有一个根据地址或寻找对象的步骤,而事实正是这样,如果Console.WriteLine(num),这样获取栈里的num的值给WriteLine方法算一步的话,要获取上面user的实例对象,在运行时是要分两步的,也就是多了根据地址去寻找托管堆里实例对象的字段或方法的步骤。IL反编译上面的Main方法,删去一些无关代码后:


1

2

3

4

5

//load local 0=>获取局部变量0(是一个地址)

IL_0012:  ldloc.0

// load field => 将指定对象中字段的值推送到堆栈上。

IL_0013:  ldfld      int32 CILDemo.Program/User::Age

IL_0018:  call       void [mscorlib]System.Console::WriteLine(int32)


1

2

3

//load local 1=>获取局部变量1(是一个值)

IL_001e:  ldloc.1

IL_001f:  call       void [mscorlib]System.Console::WriteLine(int32)

第二个WriteLine方法前,只需要一个ldloc.1(load local 1)读取局部变量1指令即可获取值给WriteLine,而第一个WriteLine前需要两条指令完成这个任务,就是上面说的分两步。

当然,大家都知道对我们来说,这是透明的,所以很多人喜欢画这样的图去帮助理解,毕竟,我们是感觉不到那个0x0612ecb4地址存在的。

也有一种说法就是,引用类型分两段存储,一是在托管堆里的值(实例对象),二是持有它的引用的变量。对于局部变量(参数)来说,这个引用就在栈里,而作为类型的字段变量的话,引用会跟随这个对象。

字段和局部变量(参数)

上面图的托管堆,大家应该看到,作为值类型的Age的值是保存在托管堆里的,并不是保存在栈里,这也是很多C#新手所犯的错误:值类型的值都是保存在栈里。

很明显他们不知道这个结论是在我们上面讨论程序运行原理时,局部变量(参数)压栈和出栈时这个特定的场景下的结论。我们要搞清楚,就像上面代码一样,除了可以定义int类型的num这个局部变量存储23这个值外,我们还可以在一个类型里定义一个int类型Age字段成员来存储一个整形数字,这时这个Age很明显不是储存在栈,所以结论应该是:值类型的值是在它声明的位置存储的。即局部变量(参数)的值会在栈里,作为类型成员的话,会跟随对象(实例对象等)。

当然,引用类型的值(实例对象)总是在托管堆里,这个结论是正确的。

ref和out

C#有值类型和引用类型的区别,再有传参时有ref和out这两个关键字使得人们对相关概念的理解更加模糊。要理解这个问题,还是要从栈的角度去理解。我们分四种情况讨论:正常传递值类型,正常传递引用类型,ref(out)传递值类型,ref(out)传递引用类型。

注意,对于运行时来说,ref和out是一样,它们的区别是C#编译器对它们的区别,ref要求初始化好,out没有要求。因为out没有要求初始化,所以被调用的方法不能读取out参数,且方法返回前必须赋值。

正常传递值类型


1

2

3

4

5

6

7

8

9

10

11

12

static void Main(string[] args)

{

    var num = 120;

    Method1(num);

    Console.WriteLine(num);//输出=>120

}

static void Method1(int num)

{

    Console.WriteLine(num);

    num = 180;

}

这种场景大家都熟悉,Method1的那句赋值是不起作用的,如果要画图的话,也跟上面第二幅图类似:

也就是说传参是把栈里的值复制到Method1的num参数,Method1操作的是自己的参数,对Main的局部变量完全没有影响,即影响不到属于Main方法的栈里的数据。

正常传递引用类型


1

2

3

4

5

6

7

8

9

10

11

12

13

14

static void Main(string[] args)

{

    var user = new User();

    user.Age = 15;

    Method2(user);

    Debug.Assert(user != null);

    Console.WriteLine(user.Age);//输出=> 18

}

static void Method2(User user)

{

    user.Age = 18;

    user = null;

}

留意这里的Method2的代码,把Age设为18,影响到了Main方法的user,而把user设为null却没有影响。要分析这个问题,还是要先从栈的角度去看,栈图如下(地址乱写):

看到第二幅图,大家应该大概明白了这个事实:无论值类型也好,引用类型也好,正常传参都是把栈里的值复制给参数,从栈的角度看的话,C#默认是按值传参的。

既然都是“按值传参”,那么引用类型为什么表现出可以影响到调用方法的局部变量这个跟值类型不同的表现呢?仔细想想也不难发现,这个不同的表现不是由传参方式不同引起的,而是值类型和引用类型的局部变量(参数)在内存的存储不同引起的。对于Main方法的局部变量user和Method2的参数user在栈里是各自储存的,栈里的数据(地址,指针,引用)互不影响,但它们都指向同一个在托管堆里的实例对象,而user.Age = 18这一句操作的正是对托管堆里的实例对象的操作,而不是栈里的数据(地址,指针,引用)。num = 180操作的是栈里的数据,而user.Age = 18却是托管堆,就是这样造成了不同的表现。

对于user = null这一句不会响应Main的局部变量,看了第三幅图应该也很容易明白,user = null跟user.Age = 18不一样,user = null是把栈里的数据(地址,指针,引用)设空,所以并不会影响Main的user。

这里再补充一下,对引用类型来说,var user = null,var user = new User(),user1 = user2都会影响栈里的数据(地址,指针,引用),第一个会设null,第二个会得到一个新的数据(地址,指针,引用),第三个跟上面传参一样,都是栈数据复制。

ref(out)传递值类型


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

static void Main(string[] args)

{

    var num = 10;

    Method1(num);

    Console.WriteLine(num);//输出=> 10

    Method3(ref num);

    Console.WriteLine(num);//输出=> 28

}

static void Method1(int num)

{

    Console.WriteLine(num);

    num = 18;

}

static void Method3(ref int num)

{

    Console.WriteLine(num);

    num = 28;

}

代码很简单,而且输出应该都很清楚,没有难度。ref的使用看似简单平常,背后其实是C#为我们做了大部分工作。画图的话,“栈图”如下(地址乱写):

看到这图,不少人应该迷惑了,Method3的参数明明写的是int类型的num,怎么在栈里却是一个指针(地址,引用)呢?这其实C#“欺骗”了我们,IL反编译看看:

可以看到,加了ref(out)的Method3编译出来的方法参数是不一样,再来看看方法里对参数取值的IL代码:


1

2

3

4

5

6

7

8

9

//这是Method1的代码

//load arg 0=>读取索引0的参数,直接就是一个值

IL_0001:  ldarg.0

//这是Method3的代码

//load arg 0=>读取索引0的参数,这是一个地址

IL_0001:  ldarg.0

//将位于上面地址处的 int32 值作为 int32 加载到堆栈上。

IL_0002:  ldind.i4

可以看到,同样是获取参数值给WriteLine,Method1只需一个指令,而Method3则需要2个,即多了一个根据地址去寻值的步骤。不难想到,赋值也有同样的区别:


1

2

3

4

5

6

7

8

9

10

11

12

13

//Method1

//把18放入栈中

IL_0008:  ldc.i4.s   18

//store arg=> 把值赋给参数变量num

IL_000a:  starg.s    num

//Method3

//load arg 0=>读取索引0的参数,这是一个地址

IL_0009:  ldarg.0

//把28放入栈中

IL_000a:  ldc.i4.s   28

//在给定的地址存储 int32 值。

IL_000c:  stind.i4

没错,虽然同样是num = 5这样一个对参数的赋值语句,有没有ref(out)关键字,实际上运行时发生的事情是不一样的。有ref(out)的方法跟上面取值一样有给定地址然后去操作(这里是赋值)的指令。

看到这里大家应该明白,给参数加了ref(out)后,参数才是引用传递,这时传递的是栈地址(指针,引用),否则就是正常的值传递--栈数据复制。

ref(out)传递引用类型

加了ref(out)的引用类型的参数有什么奥秘,这个留给大家去思考。可以肯定的是,还是从栈的角度去考虑的话,跟值类型是没有区别的,都是传递栈地址。

我个人认为,貌似给引用类型加ref(out)没什么用处。

总结

在考虑这一大堆概念问题时,我们首先要搞明白程序执行的基本原理,只不过是栈的生长和消亡的过程。明白这个过程后,要学会“从栈的角度”去思考问题,那么很多事情将会迎刃而解。为什么叫“值”类型和“引用”类型呢?其实这个“值”和“引用”是从栈的角度去考虑的,在栈里,值类型的数据就是值,引用类型在栈里只是一个地址(指针,引用)。还要注意到,变量除了可以是一个局部变量(参数)外,还可以作为一个类型的字段成员存在。知道这些后,“值类型的对象是存储在那里?”这些问题应该就一清二楚了。最后就是明白C#默认是按值传参的,也就是把栈里的数据赋值给参数,这跟在同一个方法内把一个变量赋值给同一类型的另一个变量是一样的,而加了ref(out)为什么这个神奇,其实是C#背后做了更多的事情,编译成不同的IL代码了。

参考:《CLR via C#》

时间: 2024-11-08 07:29:14

C#:图解值类型,引用类型,栈,堆,ref,out [转]的相关文章

6个重要的.NET概念:栈,堆,值类型,引用类型,装箱,拆箱

6个重要的.NET概念:栈,堆,值类型,引用类型,装箱,拆箱 引言 本篇文章主要介绍.NET中6个重要的概念:栈,堆,值类型,引用类型,装箱,拆箱.文章开始介绍当你声明一个变量时,编译器内部发生了什么,然后介绍两个重要的概念:栈和堆:最后介绍值类型和引用类型,并说明一些有关它们的重要原理. 最后通过一个简单的示例代码说明装箱拆箱带来的性能损耗. 声明变量的内部机制 在.NET程序中,当你声明一个变量,将在内存中分配一块内存.这块内存分为三部分:1,变量名:2,变量类型:3,变量值. 下图揭示了声

数往知来C#之接口 值类型与引用类型 静态非静态 异常处理 GC垃圾回收 值类型引用类型内存分配<四>

C# 基础接口篇 一.多态复习 使用个new来实现,使用virtual与override    -->new隐藏父类方法 根据当前类型,电泳对应的方法(成员)    -->override重写 无论什么情况,都是执行新的方法(成员) 继承是实现多态的一个前提,没有继承多态是不能实现的 父类与子类实现多态 抽象类与子类实现 抽象类不能实例化 抽象类中的抽象方法没有方法体 抽象类的成员有哪些   ->包含非抽象成员   ->不能实例化   ->子类必须实现父类的 抽象方法,除非子

30天C#基础巩固-----值类型/引用类型,泛型,空合并操作符(??),匿名方法

一:值类型/引用类型的区别      值类型主要包括简单类型,枚举类型,和结构体类型等,值类型的实例通常被分配在线程堆栈上面变量保存的内容是实例数据本身.引用类型被分配在托管堆上,变量保存的是地址.引用类型主要包括类类型,接口类型,委托类型和字符串类型等. 关于参数传递,这里有四种:        值类型参数的按值传递:        引用类型参数按值传递: 关于string引用类型参数按值传递的特殊情况:虽然string类型也是引用类型,然而在按值传递时,传递的实参却不会因方法中形参的改变而被

图解值类型

一名正在学习.net的学生 写这篇文章的主要原因是: 值类型或引用类型大多人可能只了解表层的含义, 而忽略的它们核心的原理. 希望大家看完以后,对值类型和引用类型会有更深的收获 文章是我平时在课室写的,由于没有网络,是在word写,然后转成pdf,再转成jpg. 也许有些内容可能表达不是很专业,或者有错误,希望各位指正 图解值类型,布布扣,bubuko.com

js:值类型/引用类型/内存回收/函数传值

把这4个概念放在一起写,因为它们是互通的 值类型:一个变量对应一块内存 var a=1; var b=a; a=2; 此时b还是等于1 就像你的克隆人,你心情不好去跳崖,他才不会傻乎乎地跟着你去跳 数值.boolean.null.undefined都是值类型 引用类型:有的博主这样比喻,一家店,它的引用就是它的钥匙 鉴于“作的精神”,我换一种比喻 一台电视机(内存)和它的遥控器关系(引用变量) 可以用遥控器换频道,但不可以用遥控器把电视变成冰箱 如果这电视不只一个遥控器,那么它们可以共同控制电视

javascript基本数据类型与值类型引用类型说明

林炳文Evankaka原创作品.转载请注明出处http://blog.csdn.net/evankaka 摘要:本文主要讲了javascript中的基本数据类型,以及值类型和引用类型的区别与使用 一.基本数据类型 在javascript中申明变量使用的关键字都是var,这点与其他的编程语言不尽相同,但是javascript亦含有五种基本的数据类型(也可以说是简单数据类型),它们分别是:Undefined,Null,Boolean,Number和String.还含有一种复杂数据类型-Object.

值类型&引用类型,装箱&拆箱

值类型:声明一个值类型变量,会在栈上分配一个空间,空间里存储的就是变量的值引用类型:声明一个引用类型变量,会在栈中分配一个空间,存储一个引用,这个引用指向了一个托管堆. 值类型:struct,枚举,数值类型,bool类型引用类型:数组,类,接口,委托(delegate),Object,string 可以看下下面的例子 public class Person { public string Name { get; set; } public int Age { get; set; } } publ

深入C#内存管理来分析值类型&引用类型,装箱&拆箱,堆栈几个概念组合之间的区别

C#初学者经常被问的几道辨析题,值类型与引用类型,装箱与拆箱,堆栈,这几个概念组合之间区别,看完此篇应该可以解惑. 俗话说,用思想编程的是文艺程序猿,用经验编程的是普通程序猿,用复制粘贴编程的是2B程序猿,开个玩笑^_^. 相信有过C#面试经历的人,对下面这句话一定不陌生: 值类型直接存储其值,引用类型存储对值的引用,值类型存在堆栈上,引用类型存储在托管堆上,值类型转为引用类型叫做装箱,引用类型转为值类型叫拆箱. 但仅仅背过这句话是不够的. C#程序员不必手工管理内存,但要编写高效的代码,就仍需

聚沙成塔【1】——值类型/引用类型

值类型 :顾名思义就是在内存中储存其值的类型,是存放于堆栈中的类型,13个{sbyte,byte,short,ushort,int,uint,long,ulong,float,double,decimal,bool,char} 引用类型   :在内存中存放的是对其的引用地址,是存放于托管堆中的类型,2个{string,object} -------------------------------------------------------------------------------- ☆