GitHub 上 57 款最流行的开源深度学习项目

转载:https://www.oschina.net/news/79500/57-most-popular-deep-learning-project-at-github

本文整理了 GitHub 上最流行的 57 款深度学习项目(按 stars 排名)。最后更新:2016.08.09

1.TensorFlow

使用数据流图计算可扩展机器学习问题

TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow 的表现比第一代的 DistBelief 快了2倍。

TensorFlow 内建深度学习的扩展支持,任何能够用计算流图形来表达的计算,都可以使用 TensorFlow。任何基于梯度的机器学习算法都能够受益于 TensorFlow 的自动分 化(auto-differentiation)。通过灵活的 Python 接口,要在 TensorFlow 中表达想法也会很容易。

2.Caffe

Stars:11799

Caffe是一个高效的开源深度学习框架。由表达式,速度和模块化组成。

3.Neural style

Stars:10148

Torch实现的神经网络算法。

Neural style 是让机器模仿已有画作的绘画风格来把一张图片重新绘制的算法。

4.deepdream

Stars:9042

Deep Dream,一款图像识别工具

5.Keras

Stars:7502

一款Python实现的深度学习库,包括卷积神经网络、递归神经网络等。运行在Theano和TensorFlow之上。

Keras是一个极简的、高度模块化的神经网络库,采用Python(Python 2.7-3.5.)开发,能够运行在TensorFlow和Theano任一平台,好项目旨在完成深度学习的快速开发。

6.RocAlphaGo

Stars:7170

学生主导的一个独立项目,从新实现了 DeepMind在2016 Nature发表的内容, 《用深度神经网络和树搜索学习围棋》 (Nature 529, 484-489, 28 Jan 2016).

7.TensorFlow Models

Stars:6671

基于TensorFlow开发的模型

8.Neural Doodle

Stars:6275

运用深度神经网络将涂鸦变为优雅的艺术品,从照片生成无缝纹理,转变图片风格,进行基于实例的提升,等等…还有更多!(语义风格传递的实现)

9.CNTK

Stars:5957

深度学习工具包 。来自微软公司的CNTK工具包的效率,“比我们所见过的都要疯狂”。 这部分归功于CNTK可借助图形处理单元(GPU)的能力,微软自称是唯一公开“可扩展GPU”功能的公司。(从单机上的1个、延伸至超算上的多个) 在与该公司的网络化GPU系统(称之为Azure GPU Lab)匹配之后,它将能够训练深度神经网络来识别语音,让Cortana虚拟助理的速度达到以前的十倍。

10.TensorFlow Examples

Stars:5872

适合初学者的 TensorFlow 教程和代码示例,做了相关笔记和代码解释。

11.ConvNet JS

Stars:5231

ConvNetJS 是用 JavaScript 实现的神经网络,同时还有基于浏览器的 demo。

12.Torch

Stars:5133

Torch7,深度学习库。

Torch7 是一个科学计算框架,支持机器学习算法。易用而且提供高效的算法实现,得益于 LuaJIT 和一个底层的 C 实现。

13.OpenFace

Stars:4855

基于深度学习网络的面部识别。

14.MXNet

Stars:4685

轻巧、便携、灵活的分布式/移动深度学习框架,支持Python, R, Julia, Scala, Go, Javascript等等语言。

MXNet是一款设计为效率和灵活性的深度学习框架。它允许你混合符号编程和命令式编程,从而最大限度提高效率和生产力。在其核心是一个动态的依赖调度,它能够自动并行符号和命令的操作。一个图形优化层,使得符号执行速度快,内存使用高效。这个库便携,轻量,而且能够扩展到多个GPU和多台机器。

15.Theano

Stars:4286

Theano 是一个 Python 库,用来定义、优化和模拟数学表达式计算,用于高效的解决多维数组的计算问题。

16.Leaf

Stars:4281

黑客的开源机器智能框架。

17.Char RNN

Stars:3820

多层递归神经网络的字符级别语言模型,基于Torch开发。

18.Neural Talk

Stars:3694

NeuralTalk是一个Python+numpy项目,用多模式递归神经网络描述图像。

19.deeplearning4j

Stars:3673

基于Hadoop 和 Spark的Java, Scala & Clojure深度学习工具。

Deeplearning4j(简称DL4J)是为Java和Scala编写的首个商业级开源分布式深度学习库。DL4J与Hadoop和Spark集成,为商业环境(而非研究工具目的)所设计。Skymind是DL4J的商业支持机构。

Deeplearning4j 技术先进,以即插即用为目标,通过更多预设的使用,避免太多配置,让非研究人员也能够进行快速的原型制作。DL4J同时可以规模化定制。DL4J遵循Apache 2.0许可协议,一切以其为基础的衍生作品均属于衍生作品的作者。

20.TFLearn

Stars:3368

深度学习库,包括高层次的TensorFlow接口。

21.TensorFlow Playground

Stars:3352

神经网络模型示例。

22.OpenAI Gym

Stars:3020

一种用于开发和比较强化学习算法的工具包。

23.Magenta

Stars:2914

Magenta: 音乐和艺术的生成与机器智能

Google Brain团队的一组研究人员发布了一个项目Project Magenta,其主要目标是利用机器学习创作艺术和谱写曲子。Project Magenta使用了 TensorFlow系统,研究人员在GitHub上开源了他们的模型和工具。

研究人员称,机器生成的音乐已经存在了许多年,但它们在都缺乏长的叙事艺术。Project Magenta就试图将故事作为机器生成音乐的重要部分。Google公布了一个DEMO(MP3)表现Magenta项目的成果。

24.Colornet

Stars:2798

用神经网络模型给灰度图上色。

25.Synaptic

Stars:2666

基于node.js和浏览器的免架构神经网络库。

26.Neural Talk 2

Stars:2550

Torch开发的图像简介生成代码,运行在GPU上。

27.Image Analogies

Stars:2540

使用神经匹配和融合生成相似图形。

28.TensorFlow Tutorials

Stars:2413

Tensorflow,从基础原理到应用。

29.Lasagne

Stars:2355

基于Theano训练和构建神经网络的轻型函数库。

30.PyLearn2

Stars:2153

基于Theano的机器学习库。

31.LISA-lab Deep Learning Tutorials

Stars:2134

深度学习教程笔记和代码。详情参见wiki页面。

32.Neon

Stars:2121

Nervana?开发的一款快速、可扩展、易上手的Python深度学习框架.

neon 是 Nervana System 的深度学习软件。根据Facebook一位研究者的基准测试,Nervana的软件比业界知名的深度学习工具性能都要高,包括Facebook自己的Torch7和Nvidia的cuDNN。

33.Matlab Deep Learning Toolbox

Stars:2032

Matlab/Octave的深度学习工具箱。包括深度信念网络、自动编码机、卷积神经网络、卷积自动编码机和vanilla神经网络等。每种方法都有入门示例。

34.Deep Learning Flappy Bird

Stars:1721

使用深度强化学习破解Flappy Bird游戏(深度 Q-学习).

35.dl-setup

Stars:1607

在深度学习机上设置软件说明。

36.Chainer

Stars:1573

一款灵活的深度学习神经网络框架。

Chainer是深度学习的框架,Chainer在深度学习的理论算法和实际应用之间架起一座桥梁。它的特点是强大、灵活、直观,被认为是深度学习的灵活框架。

37.Neural Story Teller

Stars:1514

看图讲故事的递归神经网络模型。

38.DIGITS

Stars:1353

深度学习GPU训练系统。

39.Deep Jazz

Stars:1229

基于Keras和Theano生成jazz的深度学习模型!

40.Tiny DNN

Stars:1183

仅引用头文件,无依赖且使用 C ++ 11 的深度学习框架

41.Brainstorm

Stars:1143

快速、灵活、有趣的神经网络。

42.dl-docker

Stars:1044

一个用于深度学习的一体化 Docker 镜像。 包含所有流行的 DL 框架(TensorFlow,Theano,Torch,Caffe等)。

43.Darknet

Stars:937

C语言版本的开源神经网络。

44.Theano Tutorials

Stars:904

基于Theano的机器学习入门教程,从线性回归到卷积神经网络。

45.RNN Music Composition

Stars:904

一款生成古典音乐的递归神经网络工具。

46.Blocks

Stars:866

用于构建和训练神经网络模型的Theano框架

47.TDB

Stars:860

TensorFlow的交互式、节点调试和可视化的工具。

TensorDebugger (TDB) 是深度学习调试器,使用断点和计算机图形化实时数据流可视化扩展 TensorFlow(谷歌的深度学习框架)。特别的是,TDB 是一个 Python 库和 一个 Jupyter Notebook 扩展的结合,构建 Google 的 TensorFlow 框架。

48.Scikit Neural Net

Stars:849

深度神经网络入门工具,类似scikit-learn的分类器和回归模型。

49.Veles

Stars:760

分布式机器学习平台(Python, CUDA, OpenCL)

VELES 是分布式深度学习应用系统,用户只需要提供参数,剩下的都可以交给 VELES。VELES 使用 Python 编写,使用 OpenCL 或者 CUDA,利用基于 Flow 的编程。它是三星开发的另一个 TensorFlow。

50.Deep Detect

Stars:759

基于C++11的深度学习接口和服务器,与Python绑定并支持Caffe。

51.TensorFlow DeepQ

Stars:759

基于Google Tensorflow的深度Q学习演示。

52.Caffe on Spark

Stars:724

基于Spark的Caffe。

雅虎认为,深度学习应该与现有的支持特征工程和传统(非深度)机器学习的数据处理管道在同一个集群中,创建CaffeOnSpark意在使得深度学习训练和测试能被嵌入到Spark应用程序中。CaffeOnSpark被设计成为一个Spark深度学习包。

53.Nolearn

Stars:702

神经网络库的抽象,著名的Lasagne。

54.DCGAN TensorFlow

Stars:568

基于tensorflow实现的深度卷积生成对抗网络。

55.MatConvNet

Stars:479

MATLAB CNN 计算机视觉应用工具箱。

56.DeepCL

Stars:413

用于训练深度卷积神经网络模型的OpenCL库。

57.Visual Search Server

Stars:304

可视化搜索服务器。一个简单使用TensorFlow,InceptionV3模型和AWS GPU实例实现的视觉搜索服务器。

代码实现两个方法,一个处理图像搜索的服务器和一个提取pool3功能的简单索引器。 最近邻搜索可以使用近似(更快)或使用精确方法(更慢)以近似方式执行。

来源:Top Deep Learning Projects

时间: 2024-11-06 20:23:51

GitHub 上 57 款最流行的开源深度学习项目的相关文章

GitHub 上 10 款免费开源 Windows 工具

GitHub 上 10 款免费开源 Windows 工具 GitHub 是如今所有开源事物的中央仓库, 这个网站最近发布了一个叫做<2016 Octoverse  状态报告>,详细列出了从去年起其一系列亮点, 包括总的活跃用户数,最常见的 emoji 表情,最常被使用的编程语言,等等. 而最令人感到惊奇的是什么呢? 微软竟然位列总活跃贡献榜首 - 在关注量上击败了 Facebook, Google, Atom, 以及 NPM. 我觉得不可思议的就是微软这么快就可以转变思维拥抱开源.一切都是从 

GitHub上最受欢迎的Android开源项目TOP20

以下这些开源项目都是从GitHub上筛选的,我强烈推荐android程序源代码有时间的时候自己在上面淘淘,或许能发现自己须要的开源程序. 了解开源项目有两个优点: 1.借鉴代码,一般来说.火爆的开源项目的代码质量都相当高,当我们感觉自己的学习遇到瓶颈的时候,细致研究别人的开源码会让自己受益匪浅. 2.直接用事实上现的功能:android开源项目一般来说都是组件类的,而不是一个完整的应用程序.换句话说,非常多都是提供了一种经常使用功能的解决方式,比方最著名的ActionBarSherlock就是一

推荐GitHub上10 个开源深度学习框架

推荐GitHub上10 个开源深度学习框架 日前,Google 开源了 TensorFlow(GitHub),此举在深度学习领域影响巨大,因为 Google 在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且 Google 自己的 Gmail 和搜索引擎都在使用自行研发的深度学习工具. 无疑,来自 Google 军火库的 TensorFlow 必然是开源深度学习软件中的明星产品,登陆 GitHub 当天就成为最受关注的项目,当周获得评星数就轻松超过 1 万个. 对于希望在应用中整合深度学习功

GitHub上有很多不错的iOS开源项目

GitHub上有很多不错的iOS开源项目,个人认为不错的,有这么几个:1. ReactiveCocoa:ReactiveCocoa/ReactiveCocoa · GitHub:GitHub自家的函数式响应式编程范式的Objective-C实现,名字听着很高大上,学习曲线确实也比较陡,但是绝对会改变你对iOS编程的认知,首推之.2. Mantle:Mantle/Mantle · GitHub:又是GitHub自家的产物,轻量级建模的首选,也可以很好的配合CoreData工作.3. AFNetwo

40个GitHub上最受欢迎的iOS开源项目

40个GitHub上最受欢迎的iOS开源项目(一) http://www.weste.net/2013/8-1/92975.html 40个GitHub上最受欢迎的iOS开源项目(二) http://www.weste.net/2013/8-1/92976.html

Github上Stars最多的53个深度学习项目,TensorFlow遥遥领先

原文:https://github.com/aymericdamien/TopDeepLearning 项目名称 Stars 项目介绍 TensorFlow 29622 使用数据流图计算可扩展机器学习问题. Caffe 11799 Caffe是一个高效的开源深度学习框架. Neural Style 10148 Torch实现的神经网络算法. Deep Dream 9042 Deep Dream,一款图像识别工具. Keras 7502 一款Python实现的深度学习库,包括卷积神经网络.递归神经

十个值得一试的开源深度学习框架

IT168 评论本周早些时候Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用自行研发的深度学习工具. 1 无疑,来自Google军火库的TensorFlow必然是开源深度学习软件中的明星产品,登陆GitHub当天就成为最受关注的项目,当周获得评星数就轻松超过1万个. 对于希望在应用中整合深度学习功能的开发者来说,GitHub上其实还有很多不错的开

十个开源深度学习框架

来源:http://www.ctocio.com/ccnews/19687.html 本周早些时候Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用自行研发的深度学习工具. 无疑,来自Google军火库的TensorFlow必然是开源深度学习软件中的明星产品,登陆GitHub当天就成为最受关注的项目,当周获得评星数就轻松超过1万个. 对于希望在应用

开源深度学习框架(楚才国科)

周早些时候Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用自行研发的深度学习工具. 无疑,来自Google军火库的TensorFlow必然是开源深度学习软件中的明星产品,登陆GitHub当天就成为最受关注的项目,当周获得评星数就轻松超过1万个. 对于希望在应用中整合深度学习功能的开发者来说,GitHub上其实还有很多不错的开源项目值得关注,首先我