redis 缓存击穿 看一篇成高手系列3

什么是缓存击穿

在谈论缓存击穿之前,我们先来回忆下从缓存中加载数据的逻辑,如下图所示

因此,如果黑客每次故意查询一个在缓存内必然不存在的数据,导致每次请求都要去存储层去查询,这样缓存就失去了意义。如果在大流量下数据库可能挂掉。这就是缓存击穿。

场景如下图所示:

我们正常人在登录首页的时候,都是根据userID来命中数据,然而黑客的目的是破坏你的系统,黑客可以随机生成一堆userID,然后将这些请求怼到你的服务器上,这些请求在缓存中不存在,就会穿过缓存,直接怼到数据库上,从而造成数据库连接异常。

解决方案

在这里我们给出三套解决方案,大家根据项目中的实际情况,选择使用.

讲下述三种方案前,我们先回忆下redis的setnx方法

SETNX key value

将 key 的值设为 value ,当且仅当 key 不存在。

若给定的 key 已经存在,则 SETNX 不做任何动作。

SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写。

可用版本:>= 1.0.0

时间复杂度: O(1)

返回值: 设置成功,返回 1。设置失败,返回 0 。

效果如下

redis> EXISTS job                # job 不存在

(integer) 0

redis> SETNX job "programmer"    # job 设置成功

(integer) 1

redis> SETNX job "code-farmer"   # 尝试覆盖 job ,失败

(integer) 0

redis> GET job                   # 没有被覆盖

"programmer"

1、使用互斥锁

该方法是比较普遍的做法,即,在根据key获得的value值为空时,先锁上,再从数据库加载,加载完毕,释放锁。若其他线程发现获取锁失败,则睡眠50ms后重试。

至于锁的类型,单机环境用并发包的Lock类型就行,集群环境则使用分布式锁( redis的setnx)

集群环境的redis的代码如下所示:

String get(String key) {

String value = redis.get(key);

if (value  == null) {

if (redis.setnx(key_mutex, "1")) {

// 3 min timeout to avoid mutex holder crash

redis.expire(key_mutex, 3 * 60)

value = db.get(key);

redis.set(key, value);

redis.delete(key_mutex);

} else {

//其他线程休息50毫秒后重试

Thread.sleep(50);

get(key);

}

}

}

优点

思路简单

保证一致性

缺点

代码复杂度增大

存在死锁的风险

2、异步构建缓存

在这种方案下,构建缓存采取异步策略,会从线程池中取线程来异步构建缓存,从而不会让所有的请求直接怼到数据库上。该方案redis自己维护一个timeout,当timeout小于System.currentTimeMillis()时,则进行缓存更新,否则直接返回value值。

集群环境的redis代码如下所示:

String get(final String key) {

V v = redis.get(key);

String value = v.getValue();

long timeout = v.getTimeout();

if (v.timeout <= System.currentTimeMillis()) {

// 异步更新后台异常执行

threadPool.execute(new Runnable() {

public void run() {

String keyMutex = "mutex:" + key;

if (redis.setnx(keyMutex, "1")) {

// 3 min timeout to avoid mutex holder crash

redis.expire(keyMutex, 3 * 60);

String dbValue = db.get(key);

redis.set(key, dbValue);

redis.delete(keyMutex);

}

}

});

}

return value;

}

优点

性价最佳,用户无需等待

缺点

无法保证缓存一致性

3、布隆过滤器

1、原理

布隆过滤器的巨大用处就是,能够迅速判断一个元素是否在一个集合中。因此他有如下三个使用场景:

网页爬虫对URL的去重,避免爬取相同的URL地址

反垃圾邮件,从数十亿个垃圾邮件列表中判断某邮箱是否垃圾邮箱(同理,垃圾短信)

缓存击穿,将已存在的缓存放到布隆过滤器中,当黑客访问不存在的缓存时迅速返回避免缓存及DB挂掉。

OK,接下来我们来谈谈布隆过滤器的原理

其内部维护一个全为0的bit数组,需要说明的是,布隆过滤器有一个误判率的概念,误判率越低,则数组越长,所占空间越大。误判率越高则数组越小,所占的空间越小。

假设,根据误判率,我们生成一个10位的bit数组,以及2个hash函数((f_1,f_2)),如下图所示(生成的数组的位数和hash函数的数量,我们不用去关心是如何生成的,有数学论文进行过专业的证明)。

假设输入集合为((N_1,N_2)),经过计算(f_1(N_1))得到的数值得为2,(f_2(N_1))得到的数值为5,则将数组下标为2和下表为5的位置置为1,如下图所示

同理,经过计算(f_1(N_2))得到的数值得为3,(f_2(N_2))得到的数值为6,则将数组下标为3和下表为6的位置置为1,如下图所示

这个时候,我们有第三个数(N_3),我们判断(N_3)在不在集合((N_1,N_2))中,就进行(f_1(N_3),f_2(N_3))的计算

若值恰巧都位于上图的红色位置中,我们则认为,(N_3)在集合((N_1,N_2))中

若值有一个不位于上图的红色位置中,我们则认为,(N_3)不在集合((N_1,N_2))中

以上就是布隆过滤器的计算原理,下面我们进行性能测试,

2、性能测试

代码如下:

(1)新建一个maven工程,引入guava包

<dependencies>

<dependency>

<groupId>com.google.guava</groupId>

<artifactId>guava</artifactId>

<version>22.0</version>

</dependency>

</dependencies>

(2)测试一个元素是否属于一个百万元素集合所需耗时

package bloomfilter;

import com.google.common.hash.BloomFilter;

import com.google.common.hash.Funnels;

import java.nio.charset.Charset;

public class Test {

private static int size = 1000000;

private static BloomFilter<Integer> bloomFilter =BloomFilter.create(Funnels.integerFunnel(), size);

public static void main(String[] args) {

for (int i = 0; i < size; i++) {

bloomFilter.put(i);

}

long startTime = System.nanoTime(); // 获取开始时间

//判断这一百万个数中是否包含29999这个数

if (bloomFilter.mightContain(29999)) {

System.out.println("命中了");

}

long endTime = System.nanoTime();   // 获取结束时间

System.out.println("程序运行时间: " + (endTime - startTime) + "纳秒");

}

}

输出如下所示

命中了

程序运行时间: 219386纳秒

也就是说,判断一个数是否属于一个百万级别的集合,只要0.219ms就可以完成,性能极佳。

(3)误判率的一些概念

首先,我们先不对误判率做显示的设置,进行一个测试,代码如下所示

package bloomfilter;

import java.util.ArrayList;

import java.util.List;

import com.google.common.hash.BloomFilter;

import com.google.common.hash.Funnels;

public class Test {

private static int size = 1000000;

private static BloomFilter<Integer> bloomFilter =BloomFilter.create(Funnels.integerFunnel(), size);

public static void main(String[] args) {

for (int i = 0; i < size; i++) {

bloomFilter.put(i);

}

List<Integer> list = new ArrayList<Integer>(1000);

//故意取10000个不在过滤器里的值,看看有多少个会被认为在过滤器里

for (int i = size + 10000; i < size + 20000; i++) {

if (bloomFilter.mightContain(i)) {

list.add(i);

}

}

System.out.println("误判的数量:" + list.size());

}

}

输出结果如下

误判对数量:330

如果上述代码所示,我们故意取10000个不在过滤器里的值,却还有330个被认为在过滤器里,这说明了误判率为0.03.即,在不做任何设置的情况下,默认的误判率为0.03。

下面上源码来证明:

接下来我们来看一下,误判率为0.03时,底层维护的bit数组的长度如下图所示

将bloomfilter的构造方法改为

private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size,0.01);

即,此时误判率为0.01。在这种情况下,底层维护的bit数组的长度如下图所示

由此可见,误判率越低,则底层维护的数组越长,占用空间越大。因此,误判率实际取值,根据服务器所能够承受的负载来决定,不是拍脑袋瞎想的。

3、实际使用

redis伪代码如下所示

String get(String key) {

String value = redis.get(key);

if (value  == null) {

if(!bloomfilter.mightContain(key)){

return null;

}else{

value = db.get(key);

redis.set(key, value);

}

}

return value;

}

优点

思路简单

保证一致性

性能强

缺点

代码复杂度增大

需要另外维护一个集合来存放缓存的Key

布隆过滤器不支持删值操作

原文地址:https://www.cnblogs.com/tan2810/p/10647953.html

时间: 2024-10-25 22:03:11

redis 缓存击穿 看一篇成高手系列3的相关文章

redis 延时任务 看一篇成高手系列2

引言 在开发中,往往会遇到一些关于延时任务的需求.例如 生成订单30分钟未支付,则自动取消 生成订单60秒后,给用户发短信 对上述的任务,我们给一个专业的名字来形容,那就是延时任务.那么这里就会产生一个问题,这个延时任务和定时任务的区别究竟在哪里呢?一共有如下几点区别 定时任务有明确的触发时间,延时任务没有 定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期 定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务 下面,我们以判断订单是否超时为例,进行方案分析

redis 双写一致性 看一篇成高手系列1

首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用.在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作. 但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存.又或者是先删除缓存,再更新数据库,其实大家存在很大的争议.目前没有一篇全面的博客,对这几种方案进行解析.于是博主战战兢兢,顶着被大家喷的风险,写了这篇文章. 文章结构 本文由以下三个部分组成 1.讲解缓存更新策略2.对每种策略进行缺点分析3.针对缺点给出改进方案 正文 先做一个说明,从理论上来说,给缓存设

Redis 总结精讲 看一篇成高手系统4

本文围绕以下几点进行阐述 1.为什么使用redis2.使用redis有什么缺点3.单线程的redis为什么这么快4.redis的数据类型,以及每种数据类型的使用场景5.redis的过期策略以及内存淘汰机制6.redis和数据库双写一致性问题7.如何应对缓存穿透和缓存雪崩问题8.如何解决redis的并发竞争问题 正文 1.为什么使用redis 分析:博主觉得在项目中使用redis,主要是从两个角度去考虑:性能和并发.当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功

redis缓存介绍以及常见问题浅析

# 没缓存的日子: 对于web来说,是用户量和访问量支持项目技术的更迭和前进.随着服务用户提升.可能会出现一下的一些状况: 页面并发量和访问量并不多,mysql足以支撑自己逻辑业务的发展.那么其实可以不加缓存.最多对静态页面进行缓存即可. 页面的并发量显著增多,数据库有些压力,并且有些数据更新频率较低反复被查询或者查询速度较慢.那么就可以考虑使用缓存技术优化.对高命中的对象存到key-value形式的redis中,那么,如果数据被命中,那么可以省经效率很低的db.从高效的redis中查找到数据.

阿里面试Redis最常见的三个问题:缓存击穿、雪崩、穿透(带答案)

点赞再看,养成习惯,微信搜索[三太子敖丙]我所有文章都在这里,本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试完整考点,文末有福利. 正文 上一期吊打系列我们提到了Redis的基础知识,还没看的小伙伴可以回顾一下 <吊打面试官>系列-Redis基础 那提到Redis我相信各位在面试,或者实际开发过程中对缓存雪崩,穿透,击穿也不陌生吧,就算没遇到过但是你肯定听过,那三者到底有什么区别,我们又应该怎么去防止这样的情况发生呢,我们有请下一位受害者

redis缓存穿透,缓存击穿,缓存雪崩原因+解决方案

###一.前言在我们日常的开发中,无不都是使用数据库来进行数据的存储,由于一般的系统任务中通常不会存在高并发的情况,所以这样看起来并没有什么问题,可是一旦涉及大数据量的需求,比如一些商品抢购的情景,或者是主页访问量瞬间较大的时候,单一使用数据库来保存数据的系统会因为面向磁盘,磁盘读/写速度比较慢的问题而存在严重的性能弊端,一瞬间成千上万的请求到来,需要系统在极短的时间内完成成千上万次的读/写操作,这个时候往往不是数据库能够承受的,极其容易造成数据库系统瘫痪,最终导致服务宕机的严重生产问题. 为了

redis缓存雪崩、穿透、击穿概念及解决办法

缓存雪崩 对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机.缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了.此时,如果没有采用什么特别的方案来处理这个故障,DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了. 这就是缓存雪崩. 大约在 3 年前,国内比较知名的一个互联网公司,曾因为缓存事故,导致雪崩,后台系统全部崩溃,事故从当天下午持续到晚上凌晨 3~4

Redis缓存穿透、缓存雪崩、缓存击穿

缓存穿透: ? 缓存穿透,是指查询一个数据库一定不存在的数据.正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存.如果数据库查询对象为空,则不放进缓存. 代码流程 参数传入对象主键ID 根据key从缓存中获取对象 如果对象不为空,直接返回 如果对象为空,进行数据库查询 如果从数据库查询出的对象不为空,则放入缓存(设定过期时间) ? 想象一下这个情况,如果传入的参数为-1,会是怎么样?这个-1,就是一定不存在的对象.

redis缓存穿透、缓存击穿、缓存雪崩

缓存穿透 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,造成缓存穿透. 解决办法: 预校验 在控制层对查询参数先进行校验,不符合则丢弃. 布隆过滤 将所有可能查询的参数添加到BloomFilter中,一定不存在的记录就会被BloomFilter过滤掉,从而避免了对底层存储系统的查询压力. 缓存空对象 如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但