cf438E. The Child and Binary Tree(NTT 多项式开根 多项式求逆)

题意

链接

Sol

生成函数博大精深Orz

我们设\(f(i)\)表示权值为\(i\)的二叉树数量,转移的时候可以枚举一下根节点

\(f(n) = \sum_{w \in C_1 \dots C_n} \sum_{j=0}^{n-w} f(j) f(n-w-j)\)

设\(T =n-w\),后半部分变为\(\sum_{j=0}^T f(j) f(T-j)\),是个标准的卷积形式。

对于第一重循环我们可以设出现过的数的生成函数\(C(x)\)

可以得到\(f = C * f * f + 1\),+1是因为\(f[0] = 1\)

可以解得\(f = \frac{1\pm\sqrt{1-4G}}{2G} = \frac{2}{1\pm\sqrt{1-4C}}\)

现在问题来了,我们是要取\(+\)还是取\(-\)。

结论是取\(+\),因为当取\(-\)时,C中x的取值趋向于\(0\)时分母会无意义

举个例子(来自cf讨论区)

\(C = 2x - 4x^2\),\(+\sqrt{1-4C} = 1 - 4x, -\sqrt{1-4C} = -1+4x\)

后者带入得到\(F = \frac{2}{4x}\),这玩意儿显然是无解的,因为多项式有逆元的充要条件是常数项在模意义下有逆元,然而这玩意儿的常数项是0.。

感觉做这种题直接还是要先推一推暴力dp的式子吧,不然直接用生成函数推根本无从下手。。

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, INF = 1e9 + 1;
const double eps = 1e-9, pi = acos(-1);
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M, a[MAXN], b[MAXN], c[MAXN], d[MAXN];
namespace Poly {
    int rev[MAXN], GPow[MAXN], A[MAXN], B[MAXN], C[MAXN], lim, INV2;
    const int G = 3, mod = 998244353;
    template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
    template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
    int fp(int a, int p, int P = mod) {
        int base = 1;
        for(; p; p >>= 1, a = 1ll * a * a % P) if(p & 1) base = 1ll * base *  a % P;
        return base;
    }
    int GetLen(int x) {
        int lim = 1;
        while(lim <= x) lim <<= 1;
        return lim;
    }
    int GetOrigin(int x) {//?????-?ù
        static int q[MAXN]; int tot = 0, tp = x - 1;
        for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;}
        if(tp > 1) q[++tot] = tp;
        for(int i = 2, j; i <= x - 1; i++) {
            for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
            if(j == tot + 1) return i;
        }
    }
    void Init(/*int P,*/ int Lim) {
        //mod = P; G = GetOrigin(mod); Gi = fp(G, mod - 2);
        INV2 = fp(2, mod - 2);
        for(int i = 1; i < Lim; i++) GPow[i] = fp(G, (mod - 1) / i);
    }
    void NTT(int *A, int lim, int opt) {
        int len = 0; for(int N = 1; N < lim; N <<= 1) ++len;
        for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
        for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
        for(int mid = 1; mid < lim; mid <<= 1) {
            int Wn = GPow[mid << 1];
            for(int i = 0; i < lim; i += (mid << 1)) {
                for(int j = 0, w = 1; j < mid; j++, w = mul(w, Wn)) {
                    int x = A[i + j], y = mul(w, A[i + j + mid]);
                    A[i + j] = add(x, y), A[i + j + mid] = add(x, -y);
                }
            }
        }
        if(opt == -1) {
            reverse(A + 1, A + lim);
            int Inv = fp(lim, mod - 2);
            for(int i = 0; i <= lim; i++) mul2(A[i], Inv);
        }
    }
    void Mul(int *a, int *b, int N, int M) {
        memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
        int lim = 1, len = 0;
        while(lim <= N + M) len++, lim <<= 1;
        for(int i = 0; i <= N; i++) A[i] = a[i];
        for(int i = 0; i <= M; i++) B[i] = b[i];
        NTT(A, lim, 1); NTT(B, lim, 1);
        for(int i = 0; i <= lim; i++) B[i] = mul(B[i], A[i]);
        NTT(B, lim, -1);
        for(int i = 0; i <= N + M; i++) b[i] = B[i];
        memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
    }
    void Inv(int *a, int *b, int len) {//B1 = 2B - A1 * B^2
        if(len == 1) {b[0] = fp(a[0], mod - 2); return ;}
        Inv(a, b, len >> 1);
        for(int i = 0; i < len; i++) A[i] = a[i], B[i] = b[i];
        NTT(A, len << 1, 1); NTT(B, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) mul2(A[i], mul(B[i], B[i]));
        NTT(A, len << 1, -1);
        for(int i = 0; i < len; i++) add2(b[i], add(b[i], -A[i]));
        for(int i = 0; i < (len << 1); i++) A[i] = B[i] = 0;
    }
    void Dao(int *a, int *b, int len) {
        for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0;
    }
    void Ji(int *a, int *b, int len) {
        for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0;
    }
    void Ln(int *a, int *b, int len) {//G(A) = \frac{A}{A'} qiudao zhihou jifen
        static int A[MAXN], B[MAXN];
        Dao(a, A, len);
        Inv(a, B, len);
        NTT(A, len << 1, 1); NTT(B, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) B[i] = mul(A[i], B[i]);
        NTT(B, len << 1, -1);
        Ji(B, b, len << 1);
        memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B));
    }
    void Exp(int *a, int *b, int len) {//F(x) = F_0 (1 - lnF_0 + A) but code ..why....
        if(len == 1) return (void) (b[0] = 1);
        Exp(a, b, len >> 1); Ln(b, C, len);
        C[0] = add(a[0] + 1, -C[0]);
        for(int i = 1; i < len; i++) C[i] = add(a[i], -C[i]);
        NTT(C, len << 1, 1); NTT(b, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) mul2(b[i], C[i]);
        NTT(b, len << 1, -1);
        for(int i = len; i < (len << 1); i++) C[i] = b[i] = 0;
    }
    void Sqrt(int *a, int *b, int len) {
        static int B[MAXN];
        Ln(a, B, len);
        for(int i = 0; i < len; i++) B[i] = mul(B[i], INV2);
        Exp(B, b, len);
    }
};
using namespace Poly; 

signed main() {
    N = read(); M = read(); int Lim = GetLen(M); Init(4 * Lim);
    for(int i = 1; i <= N; i++) a[i] = read();
    for(int i = 1; i <= N; i++) b[a[i]] = (-4 + mod); add2(b[0], 1);
    Sqrt(b, c, Lim);
    add2(c[0], 1);
    Inv(c, d, Lim);
    for(int i = 1; i <= M; i++) cout << mul(2, d[i]) << '\n';
    return 0;
}

原文地址:https://www.cnblogs.com/zwfymqz/p/10523926.html

时间: 2024-08-29 22:27:37

cf438E. The Child and Binary Tree(NTT 多项式开根 多项式求逆)的相关文章

CF438E The Child and Binary Tree(生成函数+多项式开根+多项式求逆)

传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多项式$A$,求多项式$B$满足$A^2\equiv B\pmod{x^n}$(和多项式求逆一样这里需要取模,否则$A$可能会有无数项) 假设我们已经求出$A'^2\equiv B\pmod{x^n}$,考虑如何计算出$A^2\equiv B\pmod{x^{2n}}$ 首先肯定存在$A^2\equiv B

CF438E The Child and Binary Tree——生成函数

题面 CF438E 解析 一开始又把题读错了... 设$g_i=1/0$表示数$i$是否在$c$中出现过,$f_i$表示权值和为$i$的二叉树个数,有下式:$$f_i=\sum_{j=1}^{m}g_j\sum_{k=0}^{i-j}f_k f_{i-j-k}$$ 设$F(x)=\sum_{i=0}^{\infty}f_i x^i$, $G(x)=\sum_{i=0}^{\infty}g_i x^i$,有:$$F=G*F^2 + 1$$ 后面$+1$是因为$g_0=0$而$f_0=1$ 求根公式

CF438E The Child and Binary Tree

题目 生成函数就是好,什么题目都能搞 先来列一个暴力\(dp\),\(dp_i\)表示形成\(i\)点权的二叉树的方案数 我们可以直接列出方程 \[ dp_i=\sum_{k=1}^n\sum_{j=0}^{i-c_k}dp_jdp_{i-c_k-j} \] 边界条件\(dp_0=1\) 发现里面类似卷积,于是生成函数来搞 \[ F(x)=\sum_{i=0}([i=0]+\sum_{k=1}^n\sum_{j=0}^{i-c_k}dp_jdp_{i-c_k-j})x^i \] \[ F(x)=

codeforces #250E The Child and Binary Tree 快速傅里叶变换

题目大意:给定一个集合S,对于i=1...m求有多少二叉树满足每个节点的权值都在集合S中且权值和为i 构造答案多项式F(x)和集合S的生成函数C(x),那么 根节点的左子树是一棵二叉树,右子树是一棵二叉树,本身的权值必须在集合S中,此外还有空树的情况 故有F(x)=F2(x)C(x)+1 解得F(x)=1±1?4C(x)√2C(x)=21±1?4C(x)√ 若等式下方取减号则分母不可逆,舍去 得到F(x)=21+1?4C(x)√ 有关多项式求逆和多项式开根的内容参见Picks的博客 CF上每个点

LeetCode Binary Tree Preorder Traversal 先根遍历

题意:给一棵树,求其先根遍历的结果. 思路: (1)深搜法: 1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public

[Codeforces438E][bzoj3625] 小朋友和二叉树 [多项式求逆+多项式开根]

题面 传送门 思路 首先,我们把这个输入的点的生成函数搞出来: \(C=\sum_{i=0}^{lim}s_ix^i\) 其中\(lim\)为集合里面出现过的最大的数,\(s_i\)表示大小为\(i\)的数是否出现过 我们再设另外一个函数\(F\),定义\(F_k\)表示总权值为\(k\)的二叉树个数 那么,一个二叉树显然可以通过两个子树(可以权值为0,也就是空子树)和一个节点构成 那么有如下求\(F\)的式子 \(F_0=1\) \(F_k=\sum_{i=0}^k s_i \sum_{j=0

P5205 【模板】多项式开根

\(\color{#0066ff}{ 题目描述 }\) 给定一个\(n-1\)次多项式\(A(x)\),求一个在\(\bmod\ x^n\)意义下的多项式\(B(x)\),使得\(B^2(x) \equiv A(x) \ (\bmod\ x^n)\) 多项式的系数在\(\bmod\ 998244353\)的意义下进行运算. \(\color{#0066ff}{输入格式}\) 第一行一个正整数\(n\). 接下来\(n\)个整数,依次表示多项式的系数\(a_0, a_1, \dots, a_{n-

bzoj 3625(CF 438E)The Child and Binary Tree——多项式开方

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3625 http://codeforces.com/contest/438/problem/E 开方:https://blog.csdn.net/kscla/article/details/79356786 不过还是不会二次剩余. 也不知道为什么取了 G(x)-B(x)=0 而不是 G(x)+B(x)=0. 式子是  B(x) = ( A(x) + G2(x) ) / 2*G(x) ,但写的

Luogu5205 【模板】多项式开根(NTT+多项式求逆)

https://www.cnblogs.com/HocRiser/p/8207295.html 安利! 写NTT把i<<=1写成了i<<=2,又调了一年.发现我的日常就是数组开小调调调,变量名写错调调调,反向判if调调调,退役吧. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include&