人工智能、机器学习和深度学习之间的区别与联系

大家都知道,在2016年,Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machine learning)和深度学习(deep learning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。

今天就用最简单的方法——可视化的展现它们三者的关系和应用。

如上图,人工智能是最早出现的,也是范围最大的;其次的机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆发的核心驱动。

五十年代,人工智能曾一度被极为看好。之后,人工智能的一些较小的子集发展了起来。显示机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大影响。

从概念的提出到走向繁荣

1956年,几个计算机科学家相聚在达特茅斯会议,提出了“人工智能”的概念。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的语言;或者被当成技术疯子的狂想扔到垃圾堆里。坦白说,直到2012年之前,这两种声音还在同时存在。

过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。

人工智能(Artificial Intelligence)——为机器赋予人的智能

早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。这就是我们现在所说的“强人工智能”(General AI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

我们目前能实现的,一般称为“弱人工智能”(Narrow AI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Faceboo的人脸识别。

这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到机器学习。

机器学习——一种实现人工智能的方法

 机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

机器学习直接来源于早期的人工智能领域。传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。

这个结果还算不错,但并不是那种能让人为之一振的成功。特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

随着时间的推进,学习算法的发展改变了一切。

深度学习——一种实现机器学习的技术

人工神经网络是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。

我们仍以停止(Stop)标志牌为例。将一个停止标志牌的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有的权重,给出一个经过深思熟虑的猜测——“概率向量”。

这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。

不过,还是有一些虔诚的研究团队,以多伦多大学的Geoffrey Hinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。

我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结构。

只有这个时候,我们才可以说神经网络成功 地自学习到一个停止标志得样子;或在Facebook得应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达教授在Google实现了神经网络学习到猫得样子等等。

吴教授得突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入的海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中得图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

深度学习,给人工智能以璀璨的未来

深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。

人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。

原文地址:https://www.cnblogs.com/wyj690/p/10774777.html

时间: 2024-11-09 01:43:53

人工智能、机器学习和深度学习之间的区别与联系的相关文章

云计算、机器学习、深度学习、人工智能和大数据,主要有什么关系?

业外人士如何了解云计算.机器学习.深度学习.人工智能.和大数据之间有什么内在联系?从应用的角度来阐述一下这五个概念之间的联系. 这五个概念按照领域可以划分成两个大部分,先分别介绍这些概念的内部联系,然后再综合介绍他们整体之间的联系. 云计算和大数据 云计算和大数据的很多研究内容是重叠的,比如分布式存储.分布式计算,可以说大数据是云计算发展到一定阶段的产物.云计算和大数据之间主要的区别在于关注的"点"不同,云计算强调服务(IaaS.PaaS.SaaS),而大数据则强调数据的价值(数据采集

简单读懂人工智能:机器学习与深度学习是什么关系

引言:随着AlphaGo战胜李世石,人工智能和深度学习这些概念已经成为一个非常火的话题.人工智能.机器学习与深度学习这几个关键词时常出现在媒体新闻中,并错误地被认为是等同的概念.本文将介绍人工智能.机器学习以及深度学习的概念,并着重解析它们之间的关系.本文将从不同领域需要解决的问题入手,依次介绍这些领域的基本概念以及解决领域内问题的主要思路.本文选自<Tensorflow:实战Google深度学习框架>. 从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作.利用巨大的存储空间和超

人工智能,机器学习,深度学习的区别

先来看看自维基百科的定义 什么是人工智能? 人工智能(Artificial Intelligence, AI)亦称机器智能,是指由人制造出来的机器所表现出来的智能.通常人工智能是指通过普通电脑程式的手段实现的类人智能技术.该词同时也指研究这样的智能系统是否能够实现,以及如何实现的科学领域. 一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”,智能主体是指一个可以观察周遭环境并作出行动以达致目标的系统.约翰·麦卡锡于1955年的定义是“制造智能机器的科学与工程.”

5分钟内看懂机器学习和深度学习的区别

欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由liuxuewen发表于云+社区专栏 在本文中,我们将研究深度学习和机器学习之间的差异.我们将逐一了解它们,然后讨论他们在各个方面的不同之处.除了深度学习和机器学习的比较外,我们还将研究他们未来的趋势和走向. 深度学习 VS 机器学习 深度学习与机器学习简介 一.什么是机器学习? 通常,为了实现人工智能,我们使用机器学习.我们有几种算法用于机器学习.例如: Find-S算法 决策树算法(Decision trees) 随机森林算法

人工智能,神经网络算法,机器学习,深度学习三者关系

对于很多初入学习人工智能的学习者来说,对人工智能.机器学习.深度学习的概念和区别还不是很了解,有可能你每天都能听到这个概念,也经常提这个概念,但是你真的懂它们之间的关系吗?那么接下来就给大家从概念和特点上进行阐述.先看下三者的关系. 人工智能包括了机器学习和深度学习,机器学习包括了深度学习,他们是子类和父类的关系. 下面这张图则更加细分. 2.什么是人工智能 人工智能(ArtificialIntelligence),英文缩写为AI.是计算机科学的一个分支.人工智能是对人的意识.思维的信息过程的模

认识:人工智能AI 机器学习 ML 深度学习DL

人工智能 人工智能(Artificial Intelligence),英文缩写为AI.它是研究.开发用于模拟.延伸和扩展人的智能的理论.方法.技术及应用系统的一门新的技术科学. 人工智能是对人的意识.思维的信息过程的模拟.人工智能不是人的智能,但能像人那样思考.也可能超过人的智能. 人工智能的定义可以分为两部分,即"人工"和"智能". 机器学习 1.    什么是机器学习 根据等人事件中判断人是否迟到了解什么是机器学习,具体参见地址:http://www.cnblo

人工智能 VS 机器学习 VS 深度学习

(原文:) The Difference Between AI, Machine Learning, and Deep Learning? (译文:) 人工智能 . 机器学习 和 深度学习的区别? 作者:cleaner链接:https://www.zhihu.com/question/57770020/answer/154211072来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.

大数据、人工智能、机器学习、深度学习,这些到底在说什么?

1,大数据.人工智能.机器学习.深度学习的关系. 大数据,或者说大数据分析平台,更具体一点就是大数据分析PaaS平台,其实是一种针对需要处理海量数据统计分析的PaaS云平台. 大数据学习可以加群:199427210 如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份2018最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入. 人工智能,是要让机器能够像人类一样具有感知.观察的能力,并且可以做到理解和

一文让你看懂人工智能、机器学习、深度学习和强化学习的关系

如果说信息技术是第三次工业革命的核心,那么人工智能所代表的智能则是下一次工业革命的核心力量. 2016年,谷歌阿尔法围棋以4:1战胜围棋世界冠军.职业九段棋手李世石,不仅让深度学习为人们所知,而且掀起了人工智能的"大众热".此后,人工智能越来越热,从机器人开发.语音识别.图像识别.自然语言处理到专家系统等不断推陈出新. 同时,人工智能技术越来越多地融入到我们的生活中,出现了智能音箱.智能助理.智能机器人等. 根据应用领域的不同,人工智能研究的技术也不尽相同,目前以机器学习.计算机视觉等