2115: [Wc2011] Xor (线性基+dfs)

2115: [Wc2011] Xor

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 5714  Solved: 2420

题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2115

Description:

Input:

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

Output:

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

Sample Input:

1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

Sample Output:

6

Hint:

题解:

我感觉这个题是很巧妙的一个题,直接dfs搜路径是显然行不通的。

其实通过观察可以发现,最终的最大异或值所走的路径,一定是一条路径加上若干环形成的。

那么我们考虑通过一次dfs将所有环的异或和求出来,然后随便选择一条路径作为我们的起始路径,这里有两种情况:

1.环没在路径上,那么此时我们走的时候就是通过若干点到那个环,然后又从那若干点回来,最终对答案有贡献的就只有环的异或和;

2.环在路径上,此时我们将这个环与原路径异或一下,那么原路径与环重叠部分就会抵消,然后会形成一条新的更优的路径。

那么此时如果我们将环与路径的最大异或值找出来,最终也是一条路径和若干环,这时就考虑利用线性基来求异或最大值。

代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 100005,M = 100005;
int n,m,tot,num;
int head[N],vis[N];
ll x[N],cir[N<<1];
struct Edge{
    int u,v,next;
    ll w;
}e[M<<1];
void adde(int u,int v,ll w){
    e[tot].v=v;e[tot].next=head[u];e[tot].w=w;head[u]=tot++;
}
void dfs(int u,int fa){
    vis[u]=1;
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].v;
        if(v==fa) continue ;
        if(!vis[v]){
            x[v]=x[u]^e[i].w;
            dfs(v,u);
        }else{
            cir[++num]=x[v]^x[u]^e[i].w;
        }
    }
}
ll p[65];
ll ans;
void xor_base(){
    for(int i=1;i<=num;i++){
        for(ll j=62;j>=0;j--){
            if((1LL<<j)&cir[i]){
                if(!p[j]){
                    p[j]=cir[i];
                    break;
                }
                cir[i]^=p[j];
            }
        }
    }
}
int main(){
    ios::sync_with_stdio(false);cin.tie(0);
    cin>>n>>m;
    memset(head,-1,sizeof(head));tot=num=0;
    for(int i=1;i<=m;i++){
        int u,v;ll w;
        cin>>u>>v>>w;
        adde(u,v,w);adde(v,u,w);
    }
    dfs(1,-1);
    ans=x[n];
    xor_base();
    for(int i=62;i>=0;i--){
        ans=max(ans,ans^p[i]);
    }
    cout<<ans;
    return 0;
}

原文地址:https://www.cnblogs.com/heyuhhh/p/10422151.html

时间: 2024-10-09 18:04:43

2115: [Wc2011] Xor (线性基+dfs)的相关文章

BZOJ 2115: [Wc2011] Xor 线性基

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115 解法: 膜:http://www.cnblogs.com/ljh2000-jump/p/5869925.html 这道题要求从1到n的最大xor和路径,存在重边,允许经过重复点.重复边.那么在图上作图尝试之后就会发现,路径一定是由许多的环和一条从1到n的路径组成.容易发现,来回走是没有任何意义的,因为来回走意味着抵消.考虑这道题求得是路径xor和最大,所以必然我们要想办法处理环的情

BZOJ 2115 [Wc2011] Xor ——线性基

[题目分析] 显然,一个路径走过两边是不需要计算的,所以我么找到一条1-n的路径,然后向该异或值不断异或简单环即可. 但是找出所有简单环是相当复杂的,我们只需要dfs一遍,找出所有的环路即可,因为所有的简单环都可以经过各种各样的异或得到. 然后线性基,在从高位向低位贪心即可,至于证明,需要拟阵的相关知识. [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath>

【BZOJ-2115】Xor 线性基 + DFS

2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2142  Solved: 893[Submit][Status][Discuss] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大

bzoj 2115: [Wc2011] Xor xor高斯消元

2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结

bzoj 2115 Xor - 线性基 - 贪心

题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 问点$1$到点$n$的最大异或路径. 因为重复走一条边后,它的贡献会被消去.所以这条路径中有贡献的边可以看成是一条$1$到$n$的简单路径加上若干个环. 因此可以找任意一条路径,然后找出所有环扔进线性基跑出最大异或和. 但是找出所有环可能会T掉,但是仔细画图发现,并不需要找出所有环,例如: 在上图中,你并不需找出所有的环,只用找出1 - 3 - 4 - 2和3 - 5 - 6 - 4这两个环,它们异或后就能得到环1 -

【BZOJ2115】【Wc2011】 Xor 线性基 异或最长路

#include <stdio.h> int main() { puts("转载请注明出处谢谢"); puts("http://blog.csdn.net/vmurder/article/details/43410545"); } 题意:找一条异或最长路. 题解:先随便来一条路径,然后我们发现这条路径上可以随便加简单环(不管有没有共点共边). 就是因为可以先从某点走到环上来一圈再走回来,这样来去的路径被搞没了,简直污得不行. 然后我们可以用线性基来决定去

Codeforces 724 G Xor-matic Number of the Graph 线性基+DFS

G. Xor-matic Number of the Graph http://codeforces.com/problemset/problem/724/G 题意:给你一张无向图.定义一个无序三元组(u,v,s)表示u到v的(不一定为简单路径)路径上xor值为s.求出这张无向图所有不重复三元组的s之和.1≤n≤10^5,1≤m≤2*10^5. 想法: 如果做过[Wc2011 xor]这道题目(题解),那么问题变得简单起来了. ①假设我们钦定一个(u,v),设任意一条u->v的路径xor值为X,

【BZOJ】2115: [Wc2011] Xor

http://www.lydsy.com/JudgeOnline/problem.php?id=2115 题意:给出一个n个点m条边的无向连通边加权图,求1-n的某条路径使得异或值最大(可以重复点可以重复边)(n<=50000, m<=100000) #include <bits/stdc++.h> using namespace std; const int N=50005, M=100015; typedef long long ll; struct E { int next,

【BZOJ2322】[BeiJing2011]梦想封印 高斯消元求线性基+DFS+set

[BZOJ2322][BeiJing2011]梦想封印 Description 渐渐地,Magic Land上的人们对那座岛屿上的各种现象有了深入的了解. 为了分析一种奇特的称为梦想封印(Fantasy Seal)的特技,需要引入如下的概念: 每一位魔法的使用者都有一个“魔法脉络”,它决定了可以使用的魔法的种类. 一般地,一个“魔法脉络”可以看作一个无向图,有N个结点及M条边,将结点编号为1~N,其中有一个结点是特殊的,称为核心(Kernel),记作1号结点.每一条边有一个固有(即生成之后再也不