高并发 大数据量 多线程

http://blog.sina.com.cn/s/blog_67cc72cc01012oa9.html

http://blog.csdn.net/jackfrued/article/details/44931161

http://blog.csdn.net/jackfrued/article/details/44921941

http://blog.csdn.net/xue_mind/article/details/52959107

http://blog.csdn.net/wenzhihui_2010/article/details/43964167

http://blog.csdn.net/y_h_t/article/details/6322823

http://blog.csdn.net/itomge/article/details/6635675

http://blog.csdn.net/itomge/article/details/8712102

http://blog.csdn.net/itomge/article/details/7061378

http://www.cnblogs.com/lanxuezaipiao/p/3371224.html

时间: 2024-10-05 04:34:29

高并发 大数据量 多线程的相关文章

大并发大数据量请求的处理方法

大并发大数据量请求一般会分为几种情况: 1.大量的用户同时对系统的不同功能页面进行查找,更新操作 2.大量的用户同时对系统的同一个页面,同一个表的大数据量进行查询操作 3.大量的用户同时对系统的同一个页面,同一个表进行更新操作 对于第一种情况一般处理方法如下: 一.对服务器层面的处理 1. 调整IIS 7应用程序池队列长度 由原来的默认1000改为65535. IIS Manager > ApplicationPools > Advanced Settings Queue Length : 6

【高并发 大数据框架整合】Springmvc+mybatis+shiro+lucene+rest+webservice+maven

1. 使用阿里巴巴Druid连接池(高效.功能强大.可扩展性好的数据库连接池.监控数据库访问性能.支持Common-Logging.Log4j和JdkLog,监控数据库访问) 2. 提供高并发JMS消息处理机制 3. 所有功能模块化.所有模块服务化.所有服务原子化的方式,提供可拓展的服务模型,使程序稳定运行,永不宕机 4. 提供Wink Rest.Webservice服务,故可作为独立服务平台部署 框架整合: Springmvc + Mybatis + Shiro(权限) + REST(服务)

【java高并发 大数据企业架构框架整合】Springmvc+mybatis+shiro+lucene+rest+webservice+maven

1. 使用阿里巴巴Druid连接池(高效.功能强大.可扩展性好的数据库连接池.监控数据库访问性能.支持Common-Logging.Log4j和JdkLog,监控数据库访问) 2. 提供高并发JMS消息处理机制 3. 所有功能模块化.所有模块服务化.所有服务原子化的方式,提供可拓展的服务模型,使程序稳定运行,永不宕机 4. 提供Wink Rest.Webservice服务,故可作为独立服务平台部署 框架整合: Springmvc + Mybatis + Shiro(权限) + REST(服务)

大数据量高并发的数据库优化

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须

[转]浅析大数据量高并发的数据库优化

链接:http://www.uml.org.cn/sjjm/201308264.asp 高并发数据库可以同时处理海量信息,应用范围很广.今天我们将讨论的是大数据量高并发的数据库优化,希望对大家有所帮助. 一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性

大数据量高并发访问的数据库优化方法

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须

(转)大数据量高并发的数据库优化与sql优化

大数据量高并发的数据库优化 一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整

大数据量高并发的数据库优化(转)

参考:http://www.cnblogs.com/chuncn/archive/2009/04/21/1440233.html 一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时

DB开发之大数据量高并发的数据库优化

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须