MOOCULUS-2 "Sequences and Series" 数列与级数 学习笔记: 1. Sequences

此课程由Ohio University于2014年在Coursera平台讲授。

本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution

Summary

  • Suppose that $\left(a_n\right)$ is a sequence. To say that $\lim_{n\to \infty}a_n=L$ is to say that for every $\varepsilon>0$, there is an $N > 0$, so that whenever $n>N$, we have $|a_n-L| < \varepsilon$. If $\lim_{n\to\infty}a_n=L$ we say that the sequence converges. If there is no finite value $L$ so that $\lim_{n\to\infty}a_n = L$, then we say that the limit does not exist, or equivalently that the sequence diverges.
  • Suppose $(a_n)$ is a sequence with initial index $N$, and suppose we have a sequence of integers $(n_i)$ so that $$N \leq n_1 < n_2 < n_3 < n_4 < n_5 < \cdots$$ Then the sequence $(b_i)$ given by $b_i = a_{n_i}$ is said to be a subsequence of the sequence $a_n$.
  • If $(b_i)$ is a subsequence of the convergent sequence $(a_n)$, then $$\lim_{i \to \infty} b_i = \lim_{n \to \infty} a_n$$
  • Suppose $(b_i)$ and $(c_i)$ are convergent subsequences of the sequence $(a_n)$, but $$\lim_{i \to \infty} b_i \neq \lim_{i \to \infty} c_i.$$ Then the sequence $(a_n)$ does not converge.
  • Squeeze Theorem: Suppose there is some $N$ so that for all $n > N$, it is the case that $a_n \le b_n \le c_n$. If $$\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=L$$ then $\lim_{n\to\infty}b_n=L$.
  • $$\lim_{n\to\infty}|a_n|=0$$ if and only if $$\lim_{n\to\infty}a_n=0$$
  • The sequence $a_n = r^n$ converges when $-1 < r \le 1$, and diverges otherwise. In symbols, $$\lim_{n\to\infty} r^n=\begin{cases}0& \mbox{if $-1 < r < 1$,} \\ 1& \mbox{if $r=1$, and} \\ \mbox{does not exist} & \mbox{if $r \leq -1$ or $r > 1$.} \end{cases}$$
  • A sequence is called increasing (or sometimes strictly increasing) if $a_n < a_{n+1}$ for all $n$. It is called non-decreasing if $a_n\le a_{n+1}$ for all $n$. Similarly a sequence is decreasing (or, by some people, strictly decreasing) if $a_n > a_{n+1}$ for all $n$ and non-increasing if $a_n\ge a_{n+1}$ for all $n$.
  • If a sequence is increasing, non-decreasing, decreasing, or non-increasing, it is said to be monotonic.
  • A sequence $(a_n)$ is bounded above if there is some number $M$ so that for all $n$, we have $a_n\le M$. Likewise, a sequence $(a_n)$ is bounded below if there is some number $M$ so that for every $n$, we have $a_n\ge M$. If a sequence is both bounded above and bounded below, the sequence is said to be bounded.
  • If the sequence $a_n$ is bounded and monotonic, then $\lim_{n \to \infty} a_n$ exists. In short, bounded monotonic sequences converge.

Exercises

1. Compute $$\lim_{x\to\infty} x^{1/x}$$ Solution: $$\lim_{x\to\infty} x^{1/x}=\lim_{x\to\infty}(e^{\ln x})^{1/x} =\lim_{x\to\infty}e^{\frac{\ln x}{x}}$$ By L‘Hopital‘s rule, we have $$\lim_{x\to\infty}\frac{\ln x}{x}=\lim_{x\to\infty}\frac{1/x}{1}=0$$ Thus, the result is $$\lim_{x\to\infty} x^{1/x}=e^0=1$$ 2. Use the squeeze theorem to show that $$\lim_{n\to\infty} {n!\over n^n}=0$$ Solution: $$0<\frac{n!}{n^n}=\frac{1}{n}\cdot\frac{2}{n}\cdot\cdots\cdots\cdot\frac{n}{n} < \frac{1}{n}\to0\ (n\to\infty)$$ According to the squeeze theorem, $$\lim_{n\to\infty} {n!\over n^n}=0$$ 3. Determine whether $$\{\sqrt{n+47}-\sqrt{n}\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.

Solution: $$\sqrt{n+47}-\sqrt{n}=\frac{47}{\sqrt{n+47}+\sqrt{n}}$$ Hence it is decreasing. On the other hand, $$\sqrt{n+47}-\sqrt{n}\ge0$$ that is, it is bounded below. Thus, it is convergent. And we have $$\lim_{x\to\infty}(\sqrt{n+47}-\sqrt{n})=\lim_{n\to\infty}\frac{47}{\sqrt{n+47}+\sqrt{n}}=0$$ 4. Determine whether $$\left\{{n^2+1\over (n+1)^2}\right\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.

Solution: $${(n+1)^2\over n^2+1}=1+{2n\over n^2+1}$$ which is decreasing. Thus $${n^2+1\over (n+1)^2}$$ is increasing. On the other hand, $${n^2+1\over (n+1)^2}={n^2+1\over n^2+2n+1} < 1$$ which means it is bounded above. Thus it is convergent. And we have $$\lim_{n\to\infty}{n^2+1\over (n+1)^2}=\lim_{n\to\infty}\frac{n^2+1}{n^2+2n+1}=\lim_{n\to\infty}\frac{1+\frac{1}{n^2}}{1+\frac{2}{n}+\frac{1}{n^2}}=1$$ 5. Determine whether $$\left\{{n+47\over\sqrt{n^2+3n}}\right\}_{n=1}^\infty$$ converges or diverges. If it converges, compute the limit.

Solution: $$f^{‘}(n)=\frac{\sqrt{n^2+3n}-(n+47)\cdot{1\over2}\cdot{1\over\sqrt{n^2+3n}}\cdot(2n+3)}{n^2+3n} < 0$$ $$\Longleftrightarrow \sqrt{n^2+3n}-(n+47)\cdot{1\over2}\cdot{1\over\sqrt{n^2+3n}}\cdot(2n+3) < 0$$ $$\Longleftrightarrow n^2+3n < {1\over2}\cdot(2n^2+97n+141)$$ $$\Longleftrightarrow n^2+3n < n^2+48.5n+70.5$$ The last inequality is obvious. Thus it is decreasing. On the other hand, $${n+47\over\sqrt{n^2+3n}}>0$$ which means it is bounded below. Hence it is convergent. And we have $$\lim_{n\to\infty}{n+47\over\sqrt{n^2+3n}}=\lim_{n\to\infty}{1+\frac{47}{n}\over\sqrt{1+\frac{3}{n}}}=1$$ 6. Determine whether $$\left\{{2^n\over n!}\right\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.

Solution: $${a_{n+1}\over a_n}={\frac{2^{n+1}}{(n+1)!}\over\frac{2^n}{n!}}={2\over n+1} < 1$$ when $n > 2$. Thus it is decreasing. On the other hand, $${2^n\over n!}>0$$ which means it is bounded below. Thus it is convergent. $$0<{2^n\over n!}={2\over n}\cdot {2\over n-1} \cdot\cdots\cdots\cdot{2\over3}\cdot{2\over2}\cdot{2\over1} < ({2\over3})^{n-2}\cdot2\to0\ (n\to\infty)$$ According to squeeze theorem we have $$\lim_{n\to\infty}{2^n\over n!}=0$$

时间: 2024-10-13 10:14:53

MOOCULUS-2 "Sequences and Series" 数列与级数 学习笔记: 1. Sequences的相关文章

MOOCULUS微积分-2: 数列与级数学习笔记 7. Taylor series

此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 Sequences and Series 本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution Summary Given a function $f$, the series $$\sum_{n=0}^\infty {f^{(n)}(0)\over n!}x^n$$

MOOCULUS微积分-2: 数列与级数学习笔记 4. Alternating series

此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 Sequences and Series 本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution Summary If $$\sum_{n=1}^\infty |a_n|$$ converges (i.e. absolutely convergent), then $$

MOOCULUS微积分-2: 数列与级数学习笔记 6. Power series

此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 Sequences and Series 本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution Summary Let $(a_n)$ be a sequence of real numbers starting with $a_0$. Then the power

Coursera微积分-2: 数列与级数学习笔记2. Series

此课程(MOOCULUS-2 "Sequences and Series")由Ohio University于2014年在Coursera平台讲授. 本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution Summary Suppose $(a_n)$ is a sequence with associated series $$\sum_{k=1}^\infty a_k$$ The sequence of partial sums associa

MOOCULUS微积分-2: 数列与级数学习笔记 Review and Final

此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 Sequences and Series 本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution Review Determine whether the series converges. 1. $\displaystyle\sum_{n=0}^{\infty}{n\

pandas库学习笔记(一)Series入门学习

Pandas基本介绍: pandas is an open source, BSD-licensed (permissive free software licenses) library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. 我们快速简单地看一下pandas中的基本数据结构,先从数据类型.索引.切片等

利用python数据分析panda学习笔记之Series

1 Series a:类似一维数组的对象,每一个数据与之相关的数据标签组成 b:生成的左边为索引,不指定则默认从0开始. 1 from pandas import Series,DataFrame 2 import pandas as pd 3 #series 一组数据与相关得数据标签组成 4 obj=Series([4,7,-5,3]) 5 obj#索引在左边 值在右边 c:可以通过values和index属性获取数组的表示形式和索引对象 1 obj.values#array([ 4, 7,

【算法学习笔记】89. 序列型动态规划 SJTU OJ 4020 数列游戏

http://acm.sjtu.edu.cn/OnlineJudge/problem/4020 一上手就来了一个删点 排序+DFS.... 虽然正确性没问题 但是超时 只有60分. 主要在于不知道怎么减少搜索量 思路就是删除一些肯定不能在的点, 然后经过条件判断 DFS地去搜索最长的路径 #include <iostream> #include <vector> #include <algorithm> #include <cstring> #include

Codeforces #550 (Div3) - G.Two Merged Sequences(dp / 贪心)

Problem  Codeforces #550 (Div3) - G.Two Merged Sequences Time Limit: 2000 mSec Problem Description Two integer sequences existed initially, one of them was strictly increasing, and another one — strictly decreasing. Strictly increasing sequence is a