POJ 题目3169 Layout(差分约束)

Layout

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8354   Accepted: 4017

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

USACO 2005 December Gold

ac代码

#include<stdio.h>
#include<string.h>
#include<string>
#include<queue>
#include<iostream>
#define INF 0xfffffff
using namespace std;
int cnt,head[1010],vis[1010],dis[1010],cut[1010];
int n,x,y;
struct s
{
	int u,v,w,next;
}edge[20020];
void add(int u,int v,int w)
{
	edge[cnt].u=u;
	edge[cnt].v=v;
	edge[cnt].w=w;
	edge[cnt].next=head[u];
	head[u]=cnt++;
}
int spfa(int s)
{
	int i;
	for(i=0;i<=n;i++)
	{
		dis[i]=INF;
	}
	memset(vis,0,sizeof(vis));
	memset(cut,0,sizeof(cut));
	dis[s]=0;
	vis[s]=1;
	queue<int>q;
	q.push(s);
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=0;
		cut[u]++;
		if(cut[u]>n)
			return -1;
		for(i=head[u];i!=-1;i=edge[i].next)
		{
			int v=edge[i].v;
			int w=edge[i].w;
			if(dis[v]>dis[u]+w)
			{
				dis[v]=dis[u]+w;
				if(!vis[v])
				{
					vis[v]=1;
					q.push(v);
				}
			}
		}
	}
	if(dis[n]==INF)
		return -2;
	return dis[n];
}
int main()
{
	while(scanf("%d%d%d",&n,&x,&y)!=EOF)
	{
		int i;
		memset(head,-1,sizeof(head));
		cnt=0;
		for(i=0;i<x;i++)
		{
			int a,b,c;
			scanf("%d%d%d",&a,&b,&c);
			add(a,b,c);
		}
		for(i=0;i<y;i++)
		{
			int a,b,c;
			scanf("%d%d%d",&a,&b,&c);
			add(b,a,-c);
		}
		printf("%d\n",spfa(1));
	}
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-12-29 23:12:23

POJ 题目3169 Layout(差分约束)的相关文章

POJ 3169 Layout (差分约束+SPFA)

Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6832   Accepted: 3292 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a

poj 3169 Layout (差分约束+Bellman )

题目链接:http://poj.org/problem?id=3169 题意:输入N, ML, MD, N默示有N个牛按1-N排成一排,ML,默示有ML行,每行输入A, B, D默示A牛和B牛最远间隔为D, MD默示有MD行,每行输入A,B,D默示A牛和B来间隔为D,求满足所有前提的1-N的最大间隔. 比较简单的差分约束,这个周周赛的A题 #include <iostream> #include <cstdlib> #include <cstdio> #include

POJ 3169 Layout (差分约束)

题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个,D[i] - D[i+1] <= 0,  D[j] -D[i ]<= k, D[i] - D[j] <= - k,那么这个题就可以用差分约束来求这个不等式组了. 1.对于差分不等式,a - b <= c ,建一条 b 到 a 的权值为 c 的边,求的是最短路,得到的是最大值(本题求的就

POJ 3169 Layout(差分约束啊)

题目链接:http://poj.org/problem?id=3169 Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing

POJ 3169 Layout(差分约束 线性差分约束)

题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距离, 若无解输出-1, 若无限长输出-2 分析: 3个关系对应的 <= 式子是: dis[b] - dis[a] <= d(1) dis[a] - dis[b] <= -d(2) dis[i] - dis[i+1] <= -1(2) 目标式:dis[N] - dis[1] <=

POJ 3169 Layout (差分约束入门)

线性约束 将所有不等式化成 \(d[a] - d[b] <= c\) 的形式,即有 \(a,b,c\)这条有向边,跑最短路即可 #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<vector> #define ll long long using namespace std; typedef pair<int,int>

POJ 3169 Layout (差分约束系统)

题目地址:POJ 3169 很简单的差分约束..公式很明显.当输入最大值的时候,是a-b<=c,最小值的时候是a-b>=c.然后根据这个式子用最短路求. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctyp

POJ 3159 Candies(差分约束+spfa+链式前向星)

题目链接:http://poj.org/problem?id=3159 题目大意:给n个人派糖果,给出m组数据,每组数据包含A,B,C三个数,意思是A的糖果数比B少的个数不多于C,即B的糖果数 - A的糖果数<=C . 最后求n 比 1 最多多多少颗糖果. 解题思路:经典差分约束的题目,具体证明看这里<数与图的完美结合——浅析差分约束系统>. 不妨将糖果数当作距离,把相差的最大糖果数看成有向边AB的权值,我们得到 dis[B]-dis[A]<=w(A,B).看到这里,我们可以联想到

poj 1275 Cashier Employment 差分约束

差分约束模板题,差分约束是判断联立不等式组是否有解的一种方法,建图是关键. 代码: //poj 1275 //sep9 #include <iostream> #include <queue> using namespace std; const int maxM=10024; const int maxN=32; struct Edge { int v,w,nxt; }edge[maxM]; int t[maxN],c[maxN],head[maxN],vis[maxN],inq