简单DP+暴力 POJ 1050

To the Max

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 45915   Accepted: 24282

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner:

9 2 
-4 1 
-1 8 
and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15
 1 /*这道题目n^3居然不会超时,暴力就好了*/
 2 #include<iostream>
 3 using namespace std;
 4 #include<cstdio>
 5 #define N 101
 6 int sum[N][N]={0},n,x;
 7 int main()
 8 {
 9     scanf("%d",&n);
10     for(int i=1;i<=n;++i)
11       for(int j=1;j<=n;++j)
12       {
13            scanf("%d",&x);
14            sum[i][j]=sum[i][j-1]+x;/*sum[i][j]表示的是第i行前j个数的和*/
15       }
16     int ans=-(1<<30);
17     for(int i=1;i<=n;++i)
18       for(int j=i;j<=n;++j)/*暴力枚举每行区间*/
19       {
20           int tmp=0;/*tmp为当前矩阵的大小*/
21           for(int k=1;k<=n;++k)/*枚举每一行*/
22           {
23               int que=sum[k][j]-sum[k][i-1];/*取出这一行*/
24               if(tmp>0) tmp+=que;/*如果当前矩阵的大小已经<0了,那么再加上就要放弃之前的矩阵,放弃一定会更优*/
25               else tmp=que;
26               ans=max(ans,tmp);/*因为我们会随时放弃矩阵,所以最大值的更新,在循环中进行*/
27           }
28       }
29     cout<<ans;
30     return 0;
31 }
时间: 2024-12-28 01:20:27

简单DP+暴力 POJ 1050的相关文章

【简单dp】 poj 2346

题意:给定一个N 求一共有多少个N位数     前N/2个数的和等于后N/2个数的和思路:令F[i][j] 为sum值为j的i位数的个数则问题转化成 求 sum(F[n/2][j] * F[n/2][j])注意 如果n为奇数要乘以10. #include <iostream> #include <cstdio> #include <memory.h> using namespace std; int dp[6][100]; int main() { // freopen

poj 2193 Lenny&#39;s Lucky Lotto Lists 简单dp

//poj 2193 //sep9 #include <iostream> using namespace std; typedef __int64 INT; INT dp[16][2048]; int n,m; int main() { int cases,t=0; scanf("%d",&cases); while(cases--){ scanf("%d%d",&n,&m); memset(dp,0,sizeof(dp));

HDU - 1003 - Max Sum &amp;&amp; POJ - 1050 - To the Max (经典DP问题)

题目传送:HDU - 1003 思路:最大子序列和 dp[i]= a[i]   (dp[i-1]<0) dp[i]= dp[i-1]+a[i]   (dp[i-1]>=0) AC代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <queue> #include

POJ 1050 To the Max DP题解

一维最大字段和的扩展. 要诀是固定列的左右点,比如左边记录为left, 右边记录为right,那么一个循环left从0到COL,行最大值,那么right从left开始循环到COl,就可以考虑到所有列组合了,这个循环是O(n*n),然后求范围列内的行最大子段和,时间是O(n), 这样巧妙地把二维的问题转化为一维了,最终时间复杂度是O(n^3). 可以参考Geeks上的讲解,不过他的最大子段和代码写的挺挫的,我的代码会简洁很多,而且也考虑到了负值情况了. Geeks地址:http://www.gee

POJ 2029 DP || 暴力

在大矩形中找一个小矩形 使小矩形包含的*最多 暴力或者DP  水题 暴力: #include "stdio.h" #include "string.h" int main() { int n,m,w,i,s,t,j,k,l,ans,sum,x,y; int map[101][101]; while (scanf("%d",&w)!=EOF) { if(w==0) break; scanf("%d%d",&n,&

POJ 1050 To the Max(DP,最大子矩阵和)

POJ 1050 题意:给一个矩阵,求出元素和最大的子矩阵. 思路: 之前曾写过最大子串和的一篇文章,这次由一维上升到了二维. 我们可以通过累加每行相同列或每列相同行的值,将其储存在一个数组中,便可以将二维降至一维. 时间复杂度为O(n^3). 参考: 累加每一行相同列的做法(java实现) 累加每一列相同行的做法(C++实现) code: /* *Author : Flint_x *Created Time : 2015-07-23 15:10:01 *File name : POJ1050.

POJ 3250 Bad Hair Day 简单DP 好题

Description Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self-conscious about her messy hairstyle, FJ wants to count the number of other cows that can see the top of other cows' heads. Each cow i has a sp

简单dp总结

1.poj 1160 Post Office Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16455   Accepted: 8916 Description There is a straight highway with villages alongside the highway. The highway is represented as an integer axis, and the position of

POJ1088:滑雪(简单dp)

题目链接:  http://poj.org/problem?id=1088 题目要求: 一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小.求可以滑落的最长长度. 题目解析: 首先要先排一下序,因为只能高度递减才能滑行.之后就很简单了,就是简单DP. 即:要求的滑坡是一条节点递减并依次相邻的最长路径,可以先根据高度将所有的点进行排序,在i点的时候,遍历0~i-1个点(升序排序,i前面的点的高度一定小于等于i),取相邻点间的大的路径长度 代码如下: #include <iostream