Python爬虫:一些常用的爬虫技巧总结

爬虫在开发过程中也有很多复用的过程,这里总结一下,以后也能省些事情。

1、基本抓取网页

get方法

import urllib2

url = "http://www.baidu.com"
response = urllib2.urlopen(url)
print response.read()

post方法

import urllib
import urllib2

url = "http://abcde.com"
form = {‘name‘:‘abc‘,‘password‘:‘1234‘}
form_data = urllib.urlencode(form)
request = urllib2.Request(url,form_data)
response = urllib2.urlopen(request)
print response.read()

2、使用代理IP

在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP;

在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:

import urllib2

proxy = urllib2.ProxyHandler({‘http‘: ‘127.0.0.1:8087‘})
opener = urllib2.build_opener(proxy)
urllib2.install_opener(opener)
response = urllib2.urlopen(‘http://www.baidu.com‘)
print response.read()

3、Cookies处理

cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源.

代码片段:

import urllib2, cookielib

cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())
opener = urllib2.build_opener(cookie_support)
urllib2.install_opener(opener)
content = urllib2.urlopen(‘http://XXXX‘).read()

关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。

手动添加cookie

cookie = "PHPSESSID=91rurfqm2329bopnosfu4fvmu7; kmsign=55d2c12c9b1e3; KMUID=b6Ejc1XSwPq9o756AxnBAg="
request.add_header("Cookie", cookie)

4、伪装成浏览器

某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。所以用urllib2直接访问网站经常会出现HTTP Error 403: Forbidden的情况

对有些 header 要特别留意,Server 端会针对这些 header 做检查

1.User-Agent 有些 Server 或 Proxy 会检查该值,用来判断是否是浏览器发起的 Request

2.Content-Type 在使用 REST 接口时,Server 会检查该值,用来确定 HTTP Body 中的内容该怎样解析。

这时可以通过修改http包中的header来实现,代码片段如下:

import urllib2

headers = {
    ‘User-Agent‘:‘Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6‘
}
request = urllib2.Request(
    url = ‘http://my.oschina.net/jhao104/blog?catalog=3463517‘,
    headers = headers
)
print urllib2.urlopen(request).read()

5、页面解析

对于页面解析最强大的当然是正则表达式,这个对于不同网站不同的使用者都不一样,就不用过多的说明,附两个比较好的网址:

正则表达式入门:http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html

正则表达式在线测试:http://tool.oschina.net/regex/

其次就是解析库了,常用的有两个lxml和BeautifulSoup,对于这两个的使用介绍两个比较好的网站:

lxml:http://my.oschina.net/jhao104/blog/639448

BeautifulSoup:http://cuiqingcai.com/1319.html

对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxmlC语言编码,高效,支持Xpath

6、验证码的处理

对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。

7、gzip压缩

有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60% 以上。这尤其适用于 XML web 服务,因为 XML 数据 的压缩率可以很高。

但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。

于是需要这样修改代码:

import urllib2, httplib
request = urllib2.Request(‘http://xxxx.com‘)
request.add_header(‘Accept-encoding‘, ‘gzip‘)        1
opener = urllib2.build_opener()
f = opener.open(request)

这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据

然后就是解压缩数据:

import StringIO
import gzip

compresseddata = f.read() 
compressedstream = StringIO.StringIO(compresseddata)
gzipper = gzip.GzipFile(fileobj=compressedstream) 
print gzipper.read()

8、多线程并发抓取

单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。

虽然说python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。

from threading import Thread
from Queue import Queue
from time import sleep
# q是任务队列
#NUM是并发线程总数
#JOBS是有多少任务
q = Queue()
NUM = 2
JOBS = 10
#具体的处理函数,负责处理单个任务
def do_somthing_using(arguments):
    print arguments
#这个是工作进程,负责不断从队列取数据并处理
def working():
    while True:
        arguments = q.get()
        do_somthing_using(arguments)
        sleep(1)
        q.task_done()
#fork NUM个线程等待队列
for i in range(NUM):
    t = Thread(target=working)
    t.setDaemon(True)
    t.start()
#把JOBS排入队列
for i in range(JOBS):
    q.put(i)
#等待所有JOBS完成
q.join()

转载请注明来源:开源中国 http://my.oschina.net/jhao104/blog/647308

时间: 2024-10-17 06:02:11

Python爬虫:一些常用的爬虫技巧总结的相关文章

转载:用python爬虫抓站的一些技巧总结

原文链接:http://www.pythonclub.org/python-network-application/observer-spider 原文的名称虽然用了<用python爬虫抓站的一些技巧总结>但是,这些技巧不仅仅只有使用python的开发可以借鉴,我看到这篇文章的时候也在回忆自己做爬虫的过程中也用了这些方法,只是当时没有系统的总结而已,谨以此文为鉴,为以前的爬虫程序做一个总结. 转载原文如下: 学用python也有3个多月了,用得最多的还是各类爬虫脚本:写过抓代理本机验证的脚本,

python开发的 dht网络爬虫

使用 libtorrent 的python绑定库实现一个dht网络爬虫,抓取dht网络中的磁力链接. dht 网络简介 p2p网络 在P2P网络中,通过种子文件下载资源时,要知道资源在P2P网络中哪些计算机中,这些传输资源的计算机称作peer.在传统的P2P网络中,使用tracker服务器跟踪资源的peer.要下载资源,首先需要取得这些peer. dht网络 tracker服务器面临一些版权和法律问题.于是出现了DHT,它把tracker上的资源peer信息分散到了整个网络中.dht网络是由分布

Python网络爬虫2:迷你爬虫架构

摘要:从零开始写爬虫,初学者的速成指南! 封面: 关注+转发此文然后我评论留下"架构"即可领取框架的完整程序(随意写的,仅供参考哈),也欢迎大家和我一起交流学习Python,共同成长 介绍 大家好!回顾上一期,我们在介绍了爬虫的基本概念之后,就利用各种工具横冲直撞的完成了一个小爬虫,目的就是猛.糙.快,方便初学者上手,建立信心.对于有一定基础的读者,请不要着急,以后我们会学习主流的开源框架,打造出一个强大专业的爬虫系统!不过在此之前,要继续打好基础,本期我们先介绍爬虫的种类,然后选取最

Python爬虫进阶一之爬虫框架概述

综述 爬虫入门之后,我们有两条路可以走. 一个是继续深入学习,以及关于设计模式的一些知识,强化Python相关知识,自己动手造轮子,继续为自己的爬虫增加分布式,多线程等功能扩展.另一条路便是学习一些优秀的框架,先把这些框架用熟,可以确保能够应付一些基本的爬虫任务,也就是所谓的解决温饱问题,然后再深入学习它的源码等知识,进一步强化. 就个人而言,前一种方法其实就是自己动手造轮子,前人其实已经有了一些比较好的框架,可以直接拿来用,但是为了自己能够研究得更加深入和对爬虫有更全面的了解,自己动手去多做.

Python 基础学习 网络小爬虫

<span style="font-size:18px;"># # 百度贴吧图片网络小爬虫 # import re import urllib def getHtml(url): page = urllib.urlopen(url) html = page.read() return html def getImg(html): reg = r'src="(.+?\.jpg)" pic_ext' imgre = re.compile(reg) imgli

Python+Selenium进行UI自动化测试项目中,常用的小技巧1:读取excel表,转化成字典(dict)输出

从今天开始我将会把在项目中遇到的问题,以及常用的一些技巧来分享出来,以此来促进自己的学习和提升自己:更加方便我以后的查阅. 现在要说的是:用Python来读取excel表的数据,返回字典(dict),在脚本中进行调用 我直接贴出代码: import xlrd data_path = "F:\data" # 存放excel表的路径xlsname = "userinfo.xlsx" # excel表的名字sheetname = "Sheet1" #

转 Python爬虫入门二之爬虫基础了解

静觅 » Python爬虫入门二之爬虫基础了解 2.浏览网页的过程 在用户浏览网页的过程中,我们可能会看到许多好看的图片,比如 http://image.baidu.com/ ,我们会看到几张的图片以及百度搜索框,这个过程其实就是用户输入网址之后,经过DNS服务器,找到服务器主机,向服务器发出一个请求,服务器经过解析之后,发送给用户的浏览器 HTML.JS.CSS 等文件,浏览器解析出来,用户便可以看到形形色色的图片了. 因此,用户看到的网页实质是由 HTML 代码构成的,爬虫爬来的便是这些内容

Python爬虫入门二之爬虫基础了解

1.什么是爬虫 爬虫,即网络爬虫,大家可以理解为在网络上爬行的一直蜘蛛,互联网就比作一张大网,而爬虫便是在这张网上爬来爬去的蜘蛛咯,如果它遇到资源,那么它就会抓取下来.想抓取什么?这个由你来控制它咯. 比如它在抓取一个网页,在这个网中他发现了一条道路,其实就是指向网页的超链接,那么它就可以爬到另一张网上来获取数据.这样,整个连在一起的大网对这之蜘蛛来说触手可及,分分钟爬下来不是事儿. 2.浏览网页的过程 在用户浏览网页的过程中,我们可能会看到许多好看的图片,比如 http://image.bai

Python爬虫——第一个小爬虫01

Python小爬虫——贴吧图片的爬取 在对Python有了一定的基础学习后,进行贴吧图片抓取小程序的编写. 目标: 首先肯定要实现图片抓取这个基本功能 然后要有一定的交互,程序不能太傻吧 最后实现对用户所给的链接进行抓取 一.页面获取 要让python可以进行对网页的访问,那肯定要用到urllib之类的包.So先来个 import urllib urllib中有 urllib.urlopen(str) 方法用于打开网页并返回一个对象,调用这个对象的read()方法后能直接获得网页的源代码,内容与

(转)python下很帅气的爬虫包 - Beautiful Soup 示例

官方文档地址:http://www.crummy.com/software/BeautifulSoup/bs4/doc/index.zh.html Beautiful Soup 相比其他的html解析有个非常重要的优势.html会被拆解为对象处理.全篇转化为字典和数组. 相比正则解析的爬虫,省略了学习正则的高成本. 相比xpath爬虫的解析,同样节约学习时间成本.虽然xpath已经简单点了.(爬虫框架Scrapy就是使用xpath) 安装 linux下可以执行 [plain] view plai