Deep Learning Papers

一、Image Classification(Recognition)

lenet: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

alexnet: http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

overfeat: http://arxiv.org/pdf/1312.6229v4.pdf

vgg: http://arxiv.org/pdf/1409.1556.pdf

googlenet: http://arxiv.org/pdf/1409.4842v1.pdf

二、Image Detection(Segmentation)

overfeat: http://arxiv.org/pdf/1312.6229v4.pdf

dnn: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

rcnn: http://arxiv.org/pdf/1311.2524.pdf

spp: http://arxiv.org/pdf/1406.4729v4.pdf

fcn: http://arxiv.org/pdf/1411.4038v2.pdf

fast rcnn:  http://arxiv.org/pdf/1504.08083v1.pdf

三、Image(Visual)  Search

feature learning+hash: http://arxiv.org/pdf/1504.03410v1.pdf

triplet learning: http://arxiv.org/pdf/1412.6622v3.pdf

deep rank: http://arxiv.org/pdf/1404.4661v1.pdf

Visual Search at Pinterest: http://arxiv.org/pdf/1505.07647v1.pdf

四、Image/Video Captioning

Baidu/UCLA: http://arxiv.org/abs/1410.1090

Toronto: http://arxiv.org/abs/1411.2539

Berkeley: http://arxiv.org/abs/1411.4389

Google: http://arxiv.org/abs/1411.4555

Stanford: http://cs.stanford.edu/people/karpathy/deepimagesent/

UML/UT:  http://arxiv.org/abs/1412.4729

Microsoft/CMU:  http://arxiv.org/abs/1411.5654

Microsoft:  http://arxiv.org/abs/1411.4952

时间: 2024-10-26 17:51:49

Deep Learning Papers的相关文章

(转)The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)

Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) Introduction Link to Part 1Link to Part 2 In this post, we’ll go into summarizing a lot of the new and important develo

Why Deep Learning Works – Key Insights and Saddle Points

Why Deep Learning Works – Key Insights and Saddle Points A quality discussion on the theoretical motivations for deep learning, including distributed representation, deep architecture, and the easily escapable saddle point. By Matthew Mayo. This post

(转)Deep Learning Research Review Week 1: Generative Adversarial Nets

Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I’ll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I’ll be summa

【深度学习Deep Learning】资料大全

转载:http://www.cnblogs.com/charlotte77/p/5485438.html 最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books Deep Learning66 by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by

Research Guide for Video Frame Interpolation with Deep Learning

Research Guide for Video Frame Interpolation with Deep Learning This blog is from: https://heartbeat.fritz.ai/research-guide-for-video-frame-interpolation-with-deep-learning-519ab2eb3dda In this research guide, we’ll look at deep learning papers aime

(zhuan) Deep Reinforcement Learning Papers

Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. The papers are organized based on manually-defined bookmarks. They are sorted by time to see the recent papers first. Any suggestions and pull requests

Deep learning的一些教程 (转载)

几个不错的深度学习教程,基本都有视频和演讲稿.附两篇综述文章和一副漫画.还有一些以后补充. Jeff Dean 2013 @ Stanford http://i.stanford.edu/infoseminar/dean.pdf 一个对DL能干什么的入门级介绍,主要涉及Google在语音识别.图像处理和自然语言处理三个方向上的一些应用.参<Spanner and Deep Learning>(2013-01-19) Hinton 2009 A tutorial on Deep Learning

A Full Hardware Guide to Deep Learning

A Full Hardware Guide to Deep Learning Deep Learning is very computationally intensive, so you will need a fast CPU with many cores, right? Or is it maybe wasteful to buy a fast CPU? One of the worst things you can do when building a deep learning sy

(转) Learning Deep Learning with Keras

Learning Deep Learning with Keras Piotr Migda? - blog Projects Articles Publications Resume About Photos Learning Deep Learning with Keras 30 Apr 2017 ? Piotr Migda? ? [machine-learning] [deep-learning] [overview] I teach deep learning both for a liv