hadoop 学习自定义排序

(网易云课程hadoop大数据实战学习笔记)

自定义排序,是基于k2的排序,设现有以下一组数据,分别表示矩形的长和宽,先按照面积的升序进行排序。

  1. 99
  2. 66
  3. 78
  4. 11
  5. 54

现在需要重新定义数据类型,MR的key值必须继承WritableComparable接口,因此定义RectangleWritable数据类型如下:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;
public class RectangleWritable implements WritableComparable {
	int length,width;

	public RectangleWritable() {
		super();
		// TODO Auto-generated constructor stub
	}
	public RectangleWritable(int length, int width) {
		super();
		this.length = length;
		this.width = width;
	}

	public int getLength() {
		return length;
	}
	public void setLength(int length) {
		this.length = length;
	}
	public int getWidth() {
		return width;
	}
	public void setWidth(int width) {
		this.width = width;
	}
	@Override
	public void write(DataOutput out) throws IOException {
		// TODO Auto-generated method stub
		out.writeInt(length);
		out.writeInt(width);
	}
	@Override
	public void readFields(DataInput in) throws IOException {
		// TODO Auto-generated method stub
		this.length=in.readInt();
		this.width=in.readInt();
	}
	@Override
	public int compareTo(Object arg0) {
		// TODO Auto-generated method stub
		RectangleWritable other = (RectangleWritable)arg0;
		if (this.getLength() * this.getWidth() > other.length * other.width ) {
			 return 1;
		}
		if (this.getLength() * this.getWidth() < other.length * other.width ) {
			return -1;
		}
		return 0;
	}
	@Override
	public String toString() {
		return   this.getLength() + "\t" + this.getWidth();
	}

}

  

其中,compareTo方法自定义排序规则,然后由框架进行排序。

map函数和Reduce函数并无大变化,还是按照WrodCount的思路进行,具体代码如下:

import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Reducer;
public class SelfDefineSort {
	/**
	 * @param args
	 * @author nwpulisz
	 * @date 2016.4.1
	 */
	static final String INPUT_PATH="hdfs://192.168.255.132:9000/input";
	static final String OUTPUT_PATH="hdfs://192.168.255.132:9000/output";

	public static void main(String[] args) throws Exception {
		// TODO Auto-generated method stub
		Configuration conf = new Configuration();
		Path outPut_path= new Path(OUTPUT_PATH);
		Job job = new Job(conf, "SelfDefineSort");

		//如果输出路径是存在的,则提前删除输出路径
		FileSystem fileSystem = FileSystem.get(new URI(OUTPUT_PATH), conf);
		if(fileSystem.exists(outPut_path))
		{
			fileSystem.delete(outPut_path,true);
		}
		job.setJarByClass(RectangleWritable.class);
		FileInputFormat.setInputPaths(job, INPUT_PATH);
		FileOutputFormat.setOutputPath(job, outPut_path);

		job.setMapperClass(MyMapper.class);
		job.setReducerClass(MyReducer.class);

		job.setMapOutputKeyClass(RectangleWritable.class);
		job.setMapOutputValueClass(NullWritable.class);

		job.setOutputKeyClass(IntWritable.class);
		job.setOutputValueClass(IntWritable.class);
		job.waitForCompletion(true);
	}

	static class MyMapper extends Mapper<LongWritable, Text, RectangleWritable, NullWritable>{
		protected void map(LongWritable k1, Text v1,
                Context context) throws IOException, InterruptedException {
			String[] splits = v1.toString().split("\t");
			RectangleWritable k2 = new RectangleWritable(Integer.parseInt(splits[0]),
					Integer.parseInt(splits[1]));

			context.write(k2,NullWritable.get());
		}
	}

	static class MyReducer extends Reducer<RectangleWritable, NullWritable,
					IntWritable, IntWritable>{
		protected void reduce(RectangleWritable k2,
				Iterable<NullWritable> v2s,
				Context context)
				throws IOException, InterruptedException {
			// TODO Auto-generated method stub
			context.write(new IntWritable(k2.getLength()), new IntWritable(k2.getWidth()));
		}

	}
}

  

根据自定义结果,输出结果如下:

来自为知笔记(Wiz)

时间: 2024-10-18 07:26:48

hadoop 学习自定义排序的相关文章

Hadoop 学习自定义数据类型

(学习网易云课堂Hadoop大数据实战笔记) 序列化在分布式环境的两大作用:进程间通信,永久存储. Writable接口, 是根据 DataInput 和 DataOutput 实现的简单.有效的序列化对象. MR的任意Value必须实现Writable接口: MR的key必须实现WritableComparable接口,WritableComparable继承自Writable和Comparable接口: (本节先讲自定义value值,下一节再讲自定义key值,根据key值进行自定义排序) 以

hadoop 学习自定义分区

(网易云课程hadoop大数据实战学习笔记) 如图所示:有三个ReducerTask,因此处理完成之后的数据存储在三个文件中: 默认情况下,numReduceTasks的数量为1,前面做的实验中,输出数据都是在一个文件中.通过自定义myPatitioner类,可以把ruduce处理后的数据分类汇总,这里MyPartitioner是Partitioner的基类,如果需要定制partitioner也需要继承该类.HashPartitioner是mapreduce的默认partitioner.计算方法

Hadoop之--&gt;自定义排序

data: 3 33 23 12 22 11 1 --------------------- 需求: 1 12 12 23 13 23 3 package sort; import java.io.IOException; import java.net.URI; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path

Hadoop mapreduce自定义排序WritableComparable

本文发表于本人博客. 今天继续写练习题,上次对分区稍微理解了一下,那根据那个步骤分区.排序.分组.规约来的话,今天应该是要写个排序有关的例子了,那好现在就开始! 说到排序我们可以查看下hadoop源码里面的WordCount例子中对LongWritable类型定义,它实现抽象接口WritableComparable,代码如下: public interface WritableComparable<T> extends Writable, Comparable<T> { } pub

hadoop的自定义排序

package com.qq; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; //import java.net.URI; import org.apache.hadoop.conf.Configuration; //import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import or

【Hadoop】Hadoop MR 自定义排序

1.概念 2.代码示例 FlowSort package com.ares.hadoop.mr.flowsort; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; i

Hadoop之——自定义排序算法实现排序功能

要求首先按照第一列升序排列,当第一列相同时,第二列升序排列:不多说直接上代码 1.Mapper类的实现 /** * Mapper类的实现 * @author liuyazhuang * */ static class MyMapper extends Mapper<LongWritable, Text, NewK2, LongWritable>{ protected void map(LongWritable key, Text value, org.apache.hadoop.mapredu

Hadoop mapreduce自定义分组RawComparator

本文发表于本人博客. 今天接着上次[Hadoop mapreduce自定义排序WritableComparable]文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需要了解的可以看看我在博客园的评论,现在开始. 首先我们查看下Job这个类,发现有setGroupingComparatorClass()这个方法,具体源码如下: /** * Define the comparator that controls which keys are grouped toge

Hadoop学习之自定义二次排序

一.概述    MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的.在我们实际的需求当中,往 往有要对reduce输出结果进行二次排序的需求.对于二次排序的实现,本文将通过一个实际的MapReduce二次排序例子讲述 二次排序的实现和其MapReduce的整个处理流程,并且通过结果和map.reduce端的日志来验证所描述的处理流程的正确性. 二.需求描述 1.输入数据: sort1    1 sort2    3 sort2