并查集——家谱

题目描述

现代的人对于本家族血统越来越感兴趣,现在给出充足的父子关系,请你编写程序找到某个人的最早的祖先。

输入格式:

输入文件由多行组成,首先是一系列有关父子关系的描述,其中每一组父子关系由二行组成,用#name 的形式描写一组父子关系中的父亲的名字,用+name 的形式描写一组父子关系中的儿子的名字;接下来用?name 的形式表示要求该人的最早的祖先;最后用单独的一个$表示文件结束。规定每个人的名字都有且只有 6 个字符,而且首字母大写,且没有任意两个人的名字相同。最多可能有 1000 组父子关系,总人数最多可能达到 50000 人,家谱中的记载不超过 30 代。

输出格式:

按照输入文件的要求顺序,求出每一个要找祖先的人的祖先,格式:本人的名字+一个空格+祖先的名字+回车。

输入输出样例

输入样例#1:

#George
+Rodney
#Arthur
+Gareth
+Walter
#Gareth
+Edward
?Edward
?Walter
?Rodney
?Arthur
$ 

输出样例#1
Edward Arthur
Walter Arthur
Rodney George
Arthur Arthur其实一看就可以看出这是一道很裸的并查集题目。。。既然这么裸,那我就给一种不走寻常路的用STL——map的解法。用map把儿子和他的父亲连起来,然后就很好做了,不用转成序号再做代码奉上

#include<cstdio>
#include<iostream>
#include<map>
using namespace std;
map<string,string>p;
string find(string x)
{
    if(x!=p[x])
    p[x]=find(p[x]);
    return  p[x];
}
string s,s1;
int main()
{
    char ch;
    cin>>ch;
    while(ch!=‘$‘)
    {
        cin>>s;
        if(ch==‘#‘)
        {
            s1=s;
            if(p[s]=="") p[s]=s;
        }
        else if(ch==‘+‘)
        p[s]=s1;
        else
        cout<<s<<‘ ‘<<find(s)<<endl;
        cin>>ch;
    }
    return 0;
}

时间: 2024-10-09 10:06:35

并查集——家谱的相关文章

并查集 (Union-Find Sets)及其应用

定义 并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.常常在使用中以森林来表示. 集就是让每个元素构成一个单元素的集合,也就是按一定顺序将属于同一组的元素所在的集合合并. 主要操作 初始化 把每个点所在集合初始化为其自身. 通常来说,这个步骤在每次使用该数据结构时只需要执行一次,无论何种实现方式,时间复杂度均为O(N). 查找 查找元素所在的集合,即根节点. 合并 将两个元素所在的集合合并为一个集合. 通常来说,合并之前,应先判断两个元素是否属于

算法复习(1)——并查集

翻翻我做过的286道题,发现忘了好多不记得啥了  呵呵呵.... 于是毅然决定老师让好好复习复习.. 第一节---并查集 1.what is 并查集?? 并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其 间要反复查找一个元素在哪个集合中.这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往 在空间上过大,计算机无法承受:即使在空间上勉

CodeForces 745C Hongcow Builds A Nation 并查集

题意: 给了你n个城市 m条边 k个政府 每个政府管辖的区域内不能和其他政府的区域有相连 即政府之间不存在路径 问你在维护这种关系的同时 最多再加多少条边 思路: 先找出来每个联通块 再找出来没有归属的孤立的点 把他们都放到最大的联通块里 然后每个联通块之间的点两两连边是n*(n-1)/2条边 最后算出来的ans-m就好了 (看别人的博客学了一个max_element 1 #include<bits/stdc++.h> 2 #define cl(a,b) memset(a,b,sizeof(a

并查集(个人模版)

并查集: 1 int find(int a) 2 { 3 int r=a; 4 while(f[r]!=r) 5 r=f[r]; 6 int i=a; 7 int j; 8 while(i!=r) 9 { 10 j=f[i]; 11 f[i]=r; 12 i=j; 13 } 14 return r; 15 } 16 int merge(int a,int b) 17 { 18 int A,B; 19 A=find(a); 20 B=find(b); 21 if(A!=B) 22 { 23 f[B

并查集应用

题目描述: One way that the police finds the head of a gang is to check people's phone calls. If there is a phone call between A and B, we say that A and B is related. The weight of a relation is defined to be the total time length of all the phone calls

【bzoj3674】 可持久化并查集加强版

http://www.lydsy.com/JudgeOnline/problem.php?id=3674 (题目链接) 题意 维护并查集3个操作:合并:回到完成第k个操作后的状态:查询. Solution 其实就是用主席树的叶子节点维护并查集的可持久化数组fa[]. 细节 终于认识到了按秩合并的强大,单纯写个路径压缩Re飞,写了路径压缩+按秩合并比单纯的按秩合并每快多少→_→ 代码 // bzoj3674 #include<algorithm> #include<iostream>

BZOJ1015[JSOI2008]星球大战starwar[并查集]

1015: [JSOI2008]星球大战starwar Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 5253  Solved: 2395[Submit][Status][Discuss] Description 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧道互相直接或间接地连接. 但好景不长,很快帝国又重

HDU 5606 tree 并查集

tree 把每条边权是1的边断开,发现每个点离他最近的点个数就是他所在的连通块大小. 开一个并查集,每次读到边权是0的边就合并.最后Ans?i??=size[findset(i)],size表示每个并查集根的size Ans_i=size[findset(i)],sizeAns?i??=size[findset(i)],size表示每个并查集根的sizesize. #include<cstdio> #include<cstring> #include<algorithm>

HDU 5441 离线处理 + 并查集

题意:给n个节点m条带权值边的无向图.然后q个问题,每次询问点对的数目,点对需要满足的条件是:1)连通:2)其路径的最大权值不能超过询问值. 分析:如果没次询问一次,dfs一次,很可能超时,因此可以用并查集.离线处理,把边按权值排序,把问题按大小排序.然后离线的过程就是不断向图中加边的过程. 比如样例如下: 然后离线处理,排完序后将会是一条一条的加边:问题也排了序,因此是个累加过程... 1 #include <cstdio> 2 #include <iostream> 3 #in