python 多进程multipocessing模块

# -*-coding:utf-8-*-
__author__ = ‘magicpwn‘
import multiprocessing
import Queue

def worker():
    print ‘worker‘
    return

q = Queue.Queue(1000)

def producer():
    for i in range(1000):
        q.put(i)

def consumer():
    for i in range(1000):
        print q.get(), q.qsize()
# 进程不能使用queue
# k = multiprocessing.Process(target=producer)
# sh = multiprocessing.Process(target=consumer)
# k.start()
# sh.start()

# 多进程声明和使用同线程,但通信不能使用queue.
if __name__ == ‘__main__‘:
    jobs= []
    for i in range(5):
        p = multiprocessing.Process(target=worker)
        jobs.append(p)
        p.start()
时间: 2024-11-04 17:10:37

python 多进程multipocessing模块的相关文章

python多进程multiprocessing模块中Queue的妙用

最近的部门RPA项目中,小爬为了提升爬虫性能,使用了Python中的多进程(multiprocessing)技术,里面需要用到进程锁Lock,用到进程池Pool,同时利用map方法一次构造多个process.Multiprocessing的使用确实能显著提升爬虫速度,不过程序交由用户使用时,缺乏一个好的GUI窗口来显示爬虫进度.之前的文章中使用了Chrome浏览器来渲染js脚本生成了进度条.但是鉴于Chrome在运行时十分吃内存资源,用Chrome只是生成一个进度条难免有些“大材小用”,所以,小

python 多进程multiprocessing 模块

multiprocessing 常用方法: cpu_count():统计cpu核数 multiprocessing.cpu_count() active_children() 获取所有子进程 multiprocessing.active_children() preces() 创建一个进程对象 multiprocessing.Preces(target=function_name, args=()) target: 函数名 args: 函数需要的参数,以tuple形式传入,一个参数时需(1,)

Python多进程使用

[Python之旅]第六篇(六):Python多进程使用 香飘叶子 2016-05-10 10:57:50 浏览190 评论0 python 多进程 多进程通信 摘要:   关于进程与线程的对比,下面的解释非常好的说明了这两者的区别:     这里主要说明关于Python多进程的下面几点: 1 2 3 4 5 6 7 1.多进程的使用方法 2.进程间的通信之multiprocessing.Manager()使用 3.Python进程池 ... 关于进程与线程的对比,下面的解释非常好的说明了这两者

Python 多线程threading模块

首先,我们在了解多线程时需要理解的就是什么是多线程,按照官方的解释就是:多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术. 在我自学到这里的时候,通过会在想进程和线程到底是有什么区别,我的理解就是: 进程就是一个应用程序在处理机上的一次执行过程,它是一个动态的概念,而线程是进程中的一部分,一个进程可以包含多个线程. 下面就以简单的例子来加强我们对python 线程的理解. 默认情况下,我们在没有启动线程的时候,可以看一下程序总的运行时间,应该是每个函数

Python多进程(1)——subprocess与Popen()

Python多进程方面涉及的模块主要包括: subprocess:可以在当前程序中执行其他程序或命令: mmap:提供一种基于内存的进程间通信机制: multiprocessing:提供支持多处理器技术的多进程编程接口,并且接口的设计最大程度地保持了和threading模块的一致,便于理解和使用. 本文主要介绍 subprocess 模块及其提供的 Popen 类,以及如何使用该构造器在一个进程中创建新的子进程.此外,还会简要介绍 subprocess 模块提供的其他方法与属性,这些功能上虽然没

Python多进程相关的坑

Python的multiprocessing模块实现了多进程功能,但官方文档上只有一些比较简单的用法,主要是使用函数作为process的target,而如何在class中使用多进程并没有多讲解.google出两篇比较详细的文章,建议从它们入门: https://pymotw.com/2/multiprocessing/basics.html https://pymotw.com/2/multiprocessing/communication.html 下面记录一下自己这周在python多进程上碰

【Python之旅】第六篇(六):Python多进程使用

关于进程与线程的对比,下面的解释非常好的说明了这两者的区别: 这里主要说明关于Python多进程的下面几点: 1.多进程的使用方法 2.进程间的通信 3.Python进程池 (1)比较简单的例子 (2)多个进程多次并发的情况 (3)验证apply.async方法是非阻塞的 (4)验证apply.async中的get()方法是阻塞的 1.多进程的使用方法 直接给出下面程序代码及注释: from multiprocessing import Process    #从多进程模块中导入Process

最简单方法远程调试Python多进程子程序

Python 2.6新增的multiprocessing,即多进程,给子进程代码调试有点困难,比如python自带的pdb如果直接在子进程代码里面启动会抛出一堆异常,原因是子进程的stdin/out/err等文件都已关闭,pdb无法调用.据闻winpdb.Wing IDE的调试器能够支持这样的远程调试,但似乎过于重量级(好吧前者比后者要轻多了,但一样要wxPython的环境,再说pdb的灵活可靠它们难以比拟). 其实只需稍作改动即可用pdb继续调试子进程的代码,思路来自这个博客:子进程的stdi

python多进程的理解 multiprocessing Process join run

最近看了下多进程. 一种接近底层的实现方法是使用 os.fork()方法,fork出子进程.但是这样做事有局限性的.比如windows的os模块里面没有 fork() 方法. windows:.linux: 另外还有一个模块:subprocess.这个没整过,但从vamei的博客里看到说也同样有局限性. 所以直接说主角吧 --- multiprocessing模块. multiprocessing模块会在windows上时模拟出fork的效果,可以实现跨平台,所以大多数都使用multiproce