Fork函数初识

fork函数用于创建子进程,典型的调用一次,返回两次的函数。其中调用进程返回子进程的PID,而子进程则返回0。但是两个进程的执行顺序是不定的。

fork函数调用完成以后父进程的虚拟存储空间被拷贝给了子进程的虚拟存储空间,因此也就实现了共享文件等操作。但是虚拟的存储空间映射到物理存储空间的过程中采用了写时拷贝技术(具体的操作大小是按着页控制的),该技术主要是将多进程中同样的对象(数据)在物理存储中只有一个物理存储空间,而当其中的某一个进程试图对该区域进行写操作时,内核就会在物理存储器中开辟一个新的物理页面,将需要写的区域内容复制到新的物理页面中,然后对新的物理页面进行写操作。这时就是实现了对不同进程的操作而不会产生影响其他的进程,同时也节省了很多的物理存储器。

#include <unistd.h>
#include <stdio.h>
int main ()
{
    pid_t fpid; //fpid表示fork函数返回的值
    int count=0;
    fpid=fork();
    if (fpid < 0)
        printf("error in fork!");
    else if (fpid == 0) {
        printf("i am the child process, my process id is %d/n",getpid());
        printf("我是爹的儿子/n");//对某些人来说中文看着更直白。
        count++;
    }
    else {
        printf("i am the parent process, my process id is %d/n",getpid());
        printf("我是孩子他爹/n");
        count++;
    }
    printf("统计结果是: %d/n",count);
    return 0;
}

运行结果是:
    i am the child process, my process id is 5574
    我是爹的儿子
    统计结果是: 1
    i am the parent process, my process id is 5573
    我是孩子他爹
    统计结果是: 1

在语句fpid=fork()之前,只有一个进程在执行这段代码,但在这条语句之后,就变成两个进程在执行了,这两个进程的几乎完全相同,将要执行的下一条语句都是if(fpid<0)……
    为什么两个进程的fpid不同呢,这与fork函数的特性有关。fork调用的一个奇妙之处就是它仅仅被调用一次,却能够返回两次,它可能有三种不同的返回值:
    1)在父进程中,fork返回新创建子进程的进程ID;
    2)在子进程中,fork返回0;
    3)如果出现错误,fork返回一个负值;

在fork函数执行完毕后,如果创建新进程成功,则出现两个进程,一个是子进程,一个是父进程。在子进程中,fork函数返回0,在父进程中,fork返回新创建子进程的进程ID。我们可以通过fork返回的值来判断当前进程是子进程还是父进程。

引用一位网友的话来解释fpid的值为什么在父子进程中不同。“其实就相当于链表,进程形成了链表,父进程的fpid(p 意味point)指向子进程的进程id, 因为子进程没有子进程,所以其fpid为0.
    fork出错可能有两种原因:
    1)当前的进程数已经达到了系统规定的上限,这时errno的值被设置为EAGAIN。
    2)系统内存不足,这时errno的值被设置为ENOMEM。
    创建新进程成功后,系统中出现两个基本完全相同的进程,这两个进程执行没有固定的先后顺序,哪个进程先执行要看系统的进程调度策略。
    每个进程都有一个独特(互不相同)的进程标识符(process ID),可以通过getpid()函数获得,还有一个记录父进程pid的变量,可以通过getppid()函数获得变量的值。

fork执行完毕后,出现两个进程,

有人说两个进程的内容完全一样啊,怎么打印的结果不一样啊,那是因为判断条件的原因,上面列举的只是进程的代码和指令,还有变量啊。
    执行完fork后,进程1的变量为count=0,fpid!=0(父进程)。进程2的变量为count=0,fpid=0(子进程),这两个进程的变量都是独立的,存在不同的地址中,不是共用的,这点要注意。可以说,我们就是通过fpid来识别和操作父子进程的。
    还有人可能疑惑为什么不是从#include处开始复制代码的,这是因为fork是把进程当前的情况拷贝一份,执行fork时,进程已经执行完了int count=0;fork只拷贝下一个要执行的代码到新的进程。

fork进阶知识

先看一份代码:

#include <unistd.h>
#include <stdio.h>
int main(void)
{
   int i=0;
   printf("i son/pa ppid pid  fpid/n");
   //ppid指当前进程的父进程pid
   //pid指当前进程的pid,
   //fpid指fork返回给当前进程的值
   for(i=0;i<2;i++){
       pid_t fpid=fork();
       if(fpid==0)
           printf("%d child  %4d %4d %4d/n",i,getppid(),getpid(),fpid);
       else
           printf("%d parent %4d %4d %4d/n",i,getppid(),getpid(),fpid);
   }
   return 0;
}

运行结果是:
    i son/pa ppid pid  fpid
    0 parent 2043 3224 3225
    0 child  3224 3225    0
    1 parent 2043 3224 3226
    1 parent 3224 3225 3227
    1 child     1 3227    0
    1 child     1 3226    0

这份代码比较有意思,我们来认真分析一下:
    第一步:在父进程中,指令执行到for循环中,i=0,接着执行fork,fork执行完后,系统中出现两个进程,分别是p3224和p3225(后面我都用pxxxx表示进程id为xxxx的进程)。可以看到父进程p3224的父进程是p2043,子进程p3225的父进程正好是p3224。我们用一个链表来表示这个关系:
    p2043->p3224->p3225 
    第一次fork后,p3224(父进程)的变量为i=0,fpid=3225(fork函数在父进程中返向子进程id),代码内容为:

   for(i=0;i<2;i++){
       pid_t fpid=fork();//执行完毕,i=0,fpid=3225
       if(fpid==0)
           printf("%d child  %4d %4d %4d/n",i,getppid(),getpid(),fpid);
       else
           printf("%d parent %4d %4d %4d/n",i,getppid(),getpid(),fpid);
   }
   return 0;

p3225(子进程)的变量为i=0,fpid=0(fork函数在子进程中返回0),代码内容为:

   for(i=0;i<2;i++){
       pid_t fpid=fork();//执行完毕,i=0,fpid=0
       if(fpid==0)
           printf("%d child  %4d %4d %4d/n",i,getppid(),getpid(),fpid);
       else
           printf("%d parent %4d %4d %4d/n",i,getppid(),getpid(),fpid);
   }
   return 0;

所以打印出结果:
    0 parent 2043 3224 3225
    0 child  3224 3225    0

第二步:假设父进程p3224先执行,当进入下一个循环时,i=1,接着执行fork,系统中又新增一个进程p3226,对于此时的父进程,p2043->p3224(当前进程)->p3226(被创建的子进程)。
    对于子进程p3225,执行完第一次循环后,i=1,接着执行fork,系统中新增一个进程p3227,对于此进程,p3224->p3225(当前进程)->p3227(被创建的子进程)。从输出可以看到p3225原来是p3224的子进程,现在变成p3227的父进程。父子是相对的,这个大家应该容易理解。只要当前进程执行了fork,该进程就变成了父进程了,就打印出了parent。
    所以打印出结果是:
    1 parent 2043 3224 3226
    1 parent 3224 3225 3227 
    第三步:第二步创建了两个进程p3226,p3227,这两个进程执行完printf函数后就结束了,因为这两个进程无法进入第三次循环,无法fork,该执行return 0;了,其他进程也是如此。
    以下是p3226,p3227打印出的结果:
    1 child     1 3227    0
    1 child     1 3226    0 
    细心的读者可能注意到p3226,p3227的父进程难道不该是p3224和p3225吗,怎么会是1呢?这里得讲到进程的创建和死亡的过程,在p3224和p3225执行完第二个循环后,main函数就该退出了,也即进程该死亡了,因为它已经做完所有事情了。p3224和p3225死亡后,p3226,p3227就没有父进程了,这在操作系统是不被允许的,所以p3226,p3227的父进程就被置为p1了,p1是永远不会死亡的,至于为什么,这里先不介绍,留到“三、fork高阶知识”讲。
    总结一下,这个程序执行的流程如下:

这个程序最终产生了3个子进程,执行过6次printf()函数。

原博客下边还有一份代码,还有高阶部分原博客待补充:http://blog.csdn.net/jason314/article/details/5640969

时间: 2024-08-28 16:35:01

Fork函数初识的相关文章

linux fork函数与vfork函数

man vfork: NAME vfork - create a child process and block parent SYNOPSIS #include <sys/types.h> #include <unistd.h> pid_t vfork(void); DESCRIPTION Standard description (From POSIX.1) The vfork() function has the same effect as fork(2), except

linux中fork()函数详解[zz]

转载自:http://www.cnblogs.com/york-hust/archive/2012/11/23/2784534.html 一.fork入门知识 一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事. 一个进程调用fork()函数后,系统先给新的进程分配资源,例如存储数据和代码的空间.然后把原来的进程的所有值都复制到新的新进程中,只有

fork函数

#include <unistd.h> #include <stdio.h> int main () { pid_t fpid; //fpid表示fork函数返回的值 int count=0; fpid=fork(); if (fpid < 0) printf("error in fork!"); else if (fpid == 0) { printf("i am the child process, my process id is %d/n

&lt;UNIX环境高级编程&gt;文件共享及fork函数

UNIX系统支持在不同进程间共享打开文件.内核使用3种数据结构表示打开文件,它们之间的关系决定了文件共享方面一个进程对另一个进程可能产生的影响. 内核维持了3个表,即进程表,文件表和v节点表.具体如下: 1>每个进程在进程表中都有一个纪录项,记录项中包含一张打开文件描述符表,每个描述符占用一项.与每个文件描述符相关联的是: a. 文件描述符标志(close_on_exec): b. 指向一个文件表项的指针. 2>内核为所有打开文件维持一张文件表.每个文件表项包含: a. 文件状态标志(读.写.

fork()函数,一次调用,两次返回

参考自:http://blog.csdn.net/dog_in_yellow/archive/2008/01/13/2041079.aspx 以前一直迷惑,什么叫一次调用,两次返回.通过上网搜索,终于知其原由.现将自己的理解记录于此.       准备知识:              内存中的进程包括三个部分:可执行文件(即程序),相关数据(包括变量,内存空间,缓冲区等),上下文环境(个人理解为从哪儿来,到哪儿去).我们知道,电脑CPU资源有限,单核就只有一个,多核也不是无限多.而当前运行的程序

从一段代码看fork()函数及其引发的竞争

首先来看一段从<UNIX环境高级编程>中摘录的一段非常有意思的代码.借此我们再来谈谈fork()函数的一些问题. #include "apue.h" static void charatatime(char*); int main(void) { pid_t pid; if((pid=fork())<0){ err_sys("fork error"); }else if(pid==0){ charatatime("output from

UNIX环境编程学习笔记(19)——进程管理之fork 函数的深入学习

lienhua342014-10-07 在“进程控制三部曲”中,我们学习到了 fork 是三部曲的第一部,用于创建一个新进程.但是关于 fork 的更深入的一些的东西我们还没有涉及到,例如,fork 创建的新进程与调用进程之间的关系.父子进程的数据共享问题等.fork 是否可以无限制的调用?如果不行的话,最大限制是多少?另外,我们还将学习一个 fork 的变体 vfork. 1 fork 创建的新进程与调用进程之间的关系 UNIX 操作系统中的所有进程之间的关系呈现一个树形结构.除了进程 ID

【APUE】fork函数

#include <unisth.h> pid_t fork(void) fork函数被调用一次,返回两次.子进程的返回值是0,父进程的返回值是子进程的进程id. 子进程和父进程继续执行fork调用之后的指令,子进程是父进程的副本,子进程获得父进程数据空间.堆和栈的副本.注意:这是子进程所拥有的副本,父子进程并不共享这些存储空间部分.父子进程共享正文段 #include <stdio.h> #include <sys/types.h> #include <unis

fork( )函数详解

 一.fork入门知识 一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程, 也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事. 一个进程调用fork()函数后,系统先给新的进程分配资源,例如存储数据和代码的空间.然后把原来的进程的所有值都 复制到新的新进程中,只有少数值与原来的进程的值不同.相当于克隆了一个自己. 我们来看一个例子: /* *  fork_test.c *  version 1