边坡优化主题5——bzoj 1096 [ZJOI2007]仓库建设 解决问题的方法

【原标题】

1096: [ZJOI2007]仓库建设

Time Limit: 10 Sec  Memory Limit: 162 MB

Submit: 1998  Solved: 816

[

id=1096" style="color:blue; text-decoration:none">Submit][Status]

Description

L公司有N个工厂,由高究竟分布在一座山上。

如图所看到的,工厂1在山顶。工厂N在山脚。

因为这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。

突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。因为地形的不同,在不同工厂建立仓库的费用可能是不同的。

第i个工厂眼下已有成品Pi件。在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其它的仓库进行储藏。而因为L公司产品的对外销售处设置在山脚的工厂N,故产品仅仅能往山下运(即仅仅能运往编号更大的工厂的仓库)。当然运送产品也是须要费用的,如果一件产品运送1个单位距离的费用是1。如果建立的仓库容量都都是足够大的,能够容下全部的产品。你将得到下面数据:
工厂i距离工厂1的距离Xi(当中X1=0);  工厂i眼下已有成品数量Pi;  在工厂i建立仓库的费用Ci; 请你帮助L公司寻找一个仓库建设的方案。使得总的费用(建造费用+运输费用)最小。

Input

第一行包括一个整数N,表示工厂的个数。接下来N行每行包括两个整数Xi, Pi, Ci, 意义如题中所述。

Output

仅包括一个整数。为能够找到最优方案的费用。

Sample Input

3

0 5 10

5 3 100

9 6 10

Sample Output

32

HINT

在工厂1和工厂3建立仓库。建立费用为10+10=20。运输费用为(9-5)*3 = 12。总费用32。假设仅在工厂3建立仓库。建立费用为10,运输费用为(9-0)*5+(9-5)*3=57。总费用67,不如前者优。

【数据规模】对于20%的数据, N ≤500;对于40%的数据, N ≤10000;对于100%的数据, N ≤1000000。 全部的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。

【分析与解法】总结一下我的近期的斜率优化题目的通解。

首先声明一下。我不会证明斜率优化的正确性。大概打表或是看数据范围就知道了。

第一步:推出n^2的方程,通常是一维方程,并且通用格式是:f[i]=min/max(f[j]+G)

f[i]=min(f[j]+sum[i]-sum[j]-G[j]*(a[i].x-a[j].x)+a[i].c);

第二步:如果j<k。且k比j要优。

把刚才的方程写成f[k]+G1<f[j]+G2的形式。

f[k]+sum[i]-sum[k]-G[k]*(a[i].x-a[k].x)+a[i].c<f[j]+sum[i]-sum[j]-G[j]*(a[i].x-a[j].x)+a[i].c

第三步:然后把有关k、j的项移到左边,把有关i的项移到右边。

有时两边要同除一个数使得右边仅仅剩下与i有关的成分。

抵消f[k]-sum[k]-G[k]*(a[i].x-a[k].x)<f[j]-sum[j]-G[j]*(a[i].x-a[j].x)

化简f[k]-f[j]+sum[j]-sum[k]+G[k]*a[k].x-G[j]*a[j].x<a[i].x*(G[k]-G[j])

除去(f[k]-f[j]+sum[j]-sum[k]+G[k]*a[k].x-G[j]*a[j].x)/(G[k]-G[j])<a[i].x

如今,就已经推出了斜率,再套用单调队列就可以。

【代码】

#include<cstdio>
#include<algorithm>
#define N 1000005
using namespace std;
typedef long long ll;
struct arr{ll x,p,c;}a[N];
ll sum[N],G[N],f[N],q[N],n,i,j,h,t;
bool cmp(arr a,arr b){return a.x<b.x;};
double xie(long long k,long long j)
{
  double temp=(f[k]-f[j]+sum[j]-sum[k]+G[k]*a[k].x*1.0-G[j]*a[j].x)/(G[k]-G[j]);
  return temp;
}
int main()
{
  scanf("%lld",&n);
  for (i=1;i<=n;i++)
    scanf("%lld%lld%lld",&a[i].x,&a[i].p,&a[i].c);
  sort(a+1,a+n+1,cmp);
  for (i=1;i<=n;i++)
    sum[i]=sum[i-1]+G[i-1]*(a[i].x-a[i-1].x),G[i]=G[i-1]+a[i].p;
  for (i=1;i<=n;i++)
  {
	while (h<t&&xie(q[h+1],q[h])<a[i].x) h++;
	f[i]=f[q[h]]+sum[i]-sum[q[h]]-G[q[h]]*(a[i].x-a[q[h]].x)+a[i].c;
	while (h<t&&xie(q[t],q[t-1])>xie(i,q[t])) t--;
	q[++t]=i;
  }
  printf("%lld",f[n]);
  return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

时间: 2024-10-14 23:05:20

边坡优化主题5——bzoj 1096 [ZJOI2007]仓库建设 解决问题的方法的相关文章

斜率优化专题5——bzoj 1096 [ZJOI2007]仓库建设 题解

[原题] 1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1998  Solved: 816 [Submit][Status] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决

BZOJ 1096: [ZJOI2007]仓库建设( dp + 斜率优化 )

dp(v) = min(dp(p)+cost(p,v))+C(v) 设sum(v) = ∑pi(1≤i≤v), cnt(v) = ∑pi*xi(1≤i≤v), 则cost(p,v) = x(v)*(sum(v)-sum(p)) - (cnt(v)-cnt(p)) 假设dp(v)由dp(i)转移比dp(j)转移优(i>j), 那么  dp(i)+cost(i,v) < dp(j)+cost(j,v) 即 dp(i)+x(v)*(sum(v)-sum(i))-(cnt(v)-cnt(i)) <

BZOJ 1096 [ZJOI2007]仓库建设 斜率优化dp

1096: [ZJOI2007]仓库建设 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场

bzoj 1096 [ZJOI2007]仓库建设(关于斜率优化问题的总结)

1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3234  Solved: 1388[Submit][Status][Discuss] Description L 公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天 之后将有一场暴雨,于

bzoj 1096: [ZJOI2007]仓库建设 斜率優化

1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2242  Solved: 925[Submit][Status] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工

BZOJ 1096 ZJOI2007 仓库建设 边坡优化

标题效果:特定n植物,其中一些建筑仓库,有一点使,假设没有仓库仓库向右仓库.最低消费要求 非常easy边坡优化--在此之前刷坡优化的情况下,即使这道题怎么错过 订购f[i]作为i点建设化妆i花费所有安置前的最低货 那里 公式编辑器就是爽啊~ 令sump[i]为p[i]的前缀和 令sumxp[i]为p[i]*x[i]的前缀和 化简有 f[j] + sumxp[j] = x[i]*sump[j] + sumxp[i] - x[i]*sump[i] - C[i] + f[i] 当中 X[j]=sump

bzoj 1096: [ZJOI2007]仓库建设

Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内 陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象 部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于 地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库 的费用是Ci.对于没有建立仓库的工厂,其产品应被运往其他的仓库

BZOJ 1096 [ZJOI2007]仓库建设(斜率优化DP)

[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1096 [题目大意] 有个斜坡,有n个仓库,每个仓库里面都有一些物品,物品数目为p,仓库位置为x,修缮仓库需要的费用为c,现在下雨了,之后修缮的仓库才能放东西,别的地方的仓库要运东西过来,但是只能往比它地势低的运,问所有物品得到保障的最小代价. [题解] 显然可以从高处往低处做DP,dp[i]=min(dp[j]+cost(i,j)) 我们记s[i]为p[i]的前缀和,b[i]为x[i

BZOJ 1096 ZJOI2007 仓库建设 斜率优化

题目大意:给定n个厂房,在其中一些建仓库,一个点如果没有仓库就要把仓库运到右侧的仓库中,求最小花销 很简单的斜率优化--之前刷斜率优化的时候怎么居然把这道题漏了 令f[i]为在i点建厂使i之前的货物全部安置的最小花销 则有 公式编辑器就是爽啊~ 令sump[i]为p[i]的前缀和 令sumxp[i]为p[i]*x[i]的前缀和 化简有 f[j] + sumxp[j] = x[i]*sump[j] + sumxp[i] - x[i]*sump[i] - C[i] + f[i] 其中 X[j]=su