ArcGIS教程:不同的克里金模型

  克里金方法依赖于数学模型和统计模型。通过添加包含概率的统计模型,可将克里金方法从空间插值的确定性方法中描述的确定性方法中分离出来。对于克里金法,您会将某种概率与预测值相关联;也就是说,这些值不能完全基于统计模型进行预测。以在某一地区测得的氮值这一样本为例。显然,即使样本很大,您也无法预测某个未测量位置处的准确氮值。因此,您不但要尝试预测该值,而且还要评估预测的误差。

  克里金方法依赖于自相关概念。相关性通常被视为两种变量相关的趋势。例如,股票市场在利率降低时倾向于上涨,所以称其为负相关。但是,股票市场属于正向自相关,也就是说股票市场本身存在相关性。股票市场中,相隔一天的两个值比相隔一年的两个值更加相似。这与地理的基本原则相关,即距离较近的事物要比距离较远的事物更相似。相关性衰减的比率可表示为距离的函数。

  自相关是距离的函数。这是地统计的定义功能。在经典统计法中,假定观测值是独立的,也就是说观测值间不存在相关性。在地统计中,使用空间位置的相关信息可以计算观测值间的距离并将自相关建模为距离的函数。

  另请注意,股票市场通常随时间变化而上涨,其术语名词为趋势。地统计数据中也有相同的项,它们用下面的简单数学公式来表示:

  Z(s) = μ(s) + ε(s),

  其中,Z(s) 是感兴趣变量,可分解成确定性趋势 μ(s) 和随机的自相关误差形式 ε(s)。符号 s 仅标识位置;可将其视为包含空间 x(经度)和 y(纬度)坐标。基于此公式的各种变形构成了不同克里金法的基础。先看公式的右侧部分,然后再看公式的左侧部分。

  无论模型中的趋势如何复杂,仍无法完全预测 μ(s)。在这种情况下,需要对误差项 ε(s) 做出一些假设;即,您希望它们为 0(通常情况)并且 ε(s) 与 ε(s + h) 间的自相关不依赖于实际位置 s,而仅依赖于两者之间的位移h。这对于确保重复性以估算自相关函数很有必要。例如,在下图中:

  

  假设由箭头连接的一对位置处的随机误差具有相同的自相关。

  接下来,检查趋势。趋势可以是简单的常数,即对于所有位置 s,μ(s) = m;如果 μ 未知,则此模型就是普通克里金法所依据的模型。趋势也可以由空间坐标本身的线性函数构成,例如:

  μ(s) = ?0 + ?1x + ?2y + ?3x2 + ?4y2 + ?5xy,

  这是二阶多项式趋势表面,并且仅关于空间 x 坐标和 y 坐标线性回归。如果趋势不同并且回归系数未知,则这类趋势可构成泛克里金法的模型。只要趋势完全已知(即已知所有参数和协变量),无论其是否为常数,该趋势都会构成简单克里金法的模型。

  现在,请看分解式 Z(s) = μ(s) + ε(s) 的左侧。Z(s) 可执行变换。例如,可将该项更改为指示变量,也就是说,Z(s) 小于某值(例如,臭氧浓度 0.12 ppm)时,指示变量为 0,而该项大于某值时,指示变量为 1。您可能需要预测 Z(s) 大于阈值的概率,此时,基于此模型的预测值便构成了指示克里金法。您可以构建 Z(s) 的常规不确定变换,并称其为第 i 个变量的 fi(Z(si))。您可以基于变量的函数构建预测因子,例如,如果您要对位置 s0 进行预测,则使用数据 fi(Z(si))
构建析取克里金法预测因子 g(Z(s0))。

  最后,请考虑以下情况:您具有多种变量类型,并且要为第 j 种变量类型构建模型 Zj(s) = μj(s) + εj(s)。此时,您可以考虑每个变量的不同趋势,对于两种变量类型来说,除了误差 εj(s) 的自相关外,误差 εj(s) 与εk(s) 之间还存在互相关。例如,您可以考虑两个变量(例如,臭氧浓度和微粒物质)间的互相关,并且这两个变量不需要在相同位置进行测量。基于多个感兴趣变量的模型便构成了协同克里金法的基础。您可以构建 Z(s) 的指示变量,如果使用协同克里金法模型中原始的未转换数据 Z(s)
来预测指示变量,将获得概率克里金法。如果存在多个感兴趣变量,则可将普通协同克里金法、泛协同克里金法、简单协同克里金法、指示协同克里金法、概率协同克里金法和析取协同克里金法视为之前描述的各种不同克里金法的多变量扩展。

时间: 2024-08-29 05:49:14

ArcGIS教程:不同的克里金模型的相关文章

R: Kriging interpolation and cross validation 克里金插值及交叉验证浅析

克里金插值的基本介绍可以参考ARCGIS的帮助文档[1]. 其本质就是根据已知点的数值,确定其周围点(预测点)的数值.最直观的方法就是找到已知点和预测点数值之间的关系,从而预测出预测点的数值.比如IDW插值方法,就是假设已知点和预测点的值跟它们相对距离成反比.克里金插值的精妙之处在于它不仅考虑了已知点和预测点的距离关系,还考虑了这些已知点之间的自相关关系. 如何衡量已知点之间的自相关关系呢?通常使用的就是半变异函数,其公式如下[1]: Semivariogram(distance h) = 0.

openlayers4 入门开发系列之前端动态渲染克里金插值 kriging 篇(附源码下载)

前言 openlayers4 官网的 api 文档介绍地址 openlayers4 api,里面详细的介绍 openlayers4 各个类的介绍,还有就是在线例子:openlayers4 官网在线例子,这个也是学习 openlayers4 的好素材. openlayers4 入门开发系列的地图服务基于 Geoserver 发布的,关于 Geoserver 方面操作的博客,可以参考以下几篇文章: geoserver 安装部署步骤 geoserver 发布地图服务 WMS geoserver 发布地

克里金插值及栅格渲染

1.首先写一个栅格渲染的方法: 步骤:1计算立方图 2创建色带 3渲染 //渲染        private void Renders(IRasterLayer layer)        {            IRasterClassifyColorRampRenderer classRender = new RasterClassifyColorRampRendererClass(); IRasterRenderer rasterRender = classRender as IRas

克里金插值程序

克里金插值的原理的阅读笔记,在下面下载DOWN LINK.此原理让你很快明天克里金插值的原理,论文写的十分的好.推荐你下载并阅读,如果没有CSDN积分,可以去知网或者百度学术中下载.只是上面没有我的笔记而已. 下面说说程序的事情. 这个程序有两个版本,第一个是Matlab版本的,在CSDN中可以下载,地址为 Download_LINK. 这个matlab版本的缺点是运行慢,太大的数据会慢的受不了.所以,我在网上找了一段时间,花费一天时间.终于找到一个c++版本的,这个版本的大家想必也知道.只是不

ArcGIS教程:什么是经验贝叶斯克里金法?

简介 经验贝叶斯克里金法 (EBK) 是一种地统计插值方法,可自动执行构建有效克里金模型过程中的那些最困难的步骤.Geostatistical Analyst 中的其他克里金方法需要您手动调整参数来接收准确的结果,而 EBK 可通过构造子集和模拟的过程来自动计算这些参数. 经验贝叶斯克里金法与其他克里金方法也有所不同,它通过估计基础半变异函数来说明所引入的误差.其他克里金方法通过已知的数据位置计算半变异函数,并使用此单一半变异函数在未知位置进行预测;此过程隐式假定估计的半变异函数是插值区域的真实

ArcGIS教程:绘制数据

任何分析的第一步都是绘制和检查数据.这可以提供数据集的空间组成部分的第一印象,而且可能给出异常值和错误数据值.全球趋势和其他系数间的空间自相关的主导方向的指示,所有这些在开发正确反映感兴趣的现象的插值模型的过程中都非常重要. ArcGIS 提供很多方法来可视化数据:ArcMap 可以访问用于高亮显示数据不同方面的很多分类方案和色带,而ArcScene 可以在 3D 空间渲染数据,这在查找局部异常值和全球趋势时非常有用.尽管没有正确的方法来显示数据,下图显示了相同数据的不同渲染,从中可以看出不同方

ArcGIS教程:检查数据的分布

虽然预测图在数据不服从正态分布的情况下可能不是最佳的,但 ArcGIS Geostatistical Analyst 提供的大多数插值方法都不要求数据服从正态分布.即,更改数据形状(分布)的数据变换不要求是插值模型的一部分.不过,有些克里金方法要求数据近似服从正态分布(接近钟形曲线).特别地,利用普通克里金法.简单克里金法或泛克里金法创建的分位数图和概率图都假定数据服从多元正态分布.而且,用作地统计模拟的基础的简单克里金模型应使用服从正态分布的数据或者将常态得分变换作为模型的一部分以确保数据服从

ArcGIS教程:“高斯地统计模拟”的工作原理(一)

高斯地统计模拟的一般工作流包括:准备数据.创建实现.在后台将结果传输到原始单元中,以及后处理结果和/或将结果用作传输函数(模型)的输入以评估模型输出中的变异性. 实现的生成方法 使用"高斯地统计模拟"时,首先要创建一个基于标准正态分布(平均值 = 0 且 方差 = 1)绘制的随机分配值的格网.然后,将协方差模型(基于在需要作为模拟的输入的简单克里金图层中指定的半变异函数)应用到栅格.这样可以确保栅格值遵循输入数据集中的空间结构.生成的栅格构成一个非条件实现,而且通过每次使用不同的包含正

ArcGIS教程:地统计模拟的重要概念

模拟概念 模拟在广义上是指使用模型复制现实的过程.在地统计中,模拟是随机函数(表面)的实现,其与生成该模拟的样本数据拥有相同的地统计要素(使用均值.方差和半变异函数来度量).更具体地说,高斯地统计模拟 (GGS) 适用于连续数据,并假设数据或数据的变换具有正态(高斯)分布.GGS 所依托的主要假设是数据是静态的 - 均值.方差和空间结构(半变异函数)在数据空间域上不发生改变.GGS 的另一个主要假设是建模的随机函数为多元高斯随机函数. 同克里金法相比,GGS 具有优势.由于克里金法是基于数据的局