最大似然估计和最大后验估计

本文出处:http://www.cnblogs.com/liliu/archive/2010/11/22/1883702.html

http://www.cnblogs.com/liliu/archive/2010/11/24/1886110.html

最大似然估计(Maximum likelihood estimation)

  最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。

最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的。下面我们具体描述一下最大似然估计:

首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独立同分布假设。参数为θ的模型f产生上述采样可表示为

回到上面的“模型已定,参数未知”的说法,此时,我们已知的为,未知为θ,故似然定义为:

  

  在实际应用中常用的是两边取对数,得到公式如下:

  其中称为对数似然,而称为平均对数似然。而我们平时所称的最大似然为最大的对数平均似然,即:

  

举个别人博客中的例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?很多人马上就有答案了:70%。而其后的理论支撑是什么呢?

我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜 色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2... 那么Data = (x1,x2,…,x100)。这样,

    P(Data | M)

     = P(x1,x2,…,x100|M)

     = P(x1|M)P(x2|M)…P(x100|M)

     = p^70(1-p)^30.

那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。

    70p^69(1-p)^30-p^70*30(1-p)^29=0。

    解方程可以得到p=0.7。

在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。

假如我们有一组连续变量的采样值(x1,x2,…,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大?

    P(Data | M) = ?

根据公式

   

  可得:

  对μ求导可得 ,则最大似然估计的结果为μ=(x1+x2+…+xn)/n

由上可知最大似然估计的一般求解过程:

  (1) 写出似然函数;

  (2) 对似然函数取对数,并整理;

  (3) 求导数 ;

  (4) 解似然方程

注意:最大似然估计只考虑某个模型能产生某个给定观察序列的概率。而未考虑该模型本身的概率。这点与贝叶斯估计区别。贝叶斯估计方法将在以后的博文中描述

本文参考

http://en.wikipedia.org/wiki/Maximum_likelihood

http://www.shamoxia.com/html/y2010/1520.html

最大后验估计(MAP)

最大后验估计是根据经验数据获得对难以观察的量的点估计。与最大似然估计类似,但是最大的不同时,最大后验估计的融入了要估计量的先验分布在其中。故最大后验估计可以看做规则化的最大似然估计。

首先,我们回顾上篇文章中的最大似然估计,假设x为独立同分布的采样,θ为模型参数,f为我们所使用的模型。那么最大似然估计可以表示为:

现在,假设θ的先验分布为g。通过贝叶斯理论,对于θ的后验分布如下式所示:

最后验分布的目标为:

    注:最大后验估计可以看做贝叶斯估计的一种特定形式。

  举例来说:

  假设有五个袋子,各袋中都有无限量的饼干(樱桃口味或柠檬口味),已知五个袋子中两种口味的比例分别是

    樱桃 100%

    樱桃 75% + 柠檬 25%

    樱桃 50% + 柠檬 50%

    樱桃 25% + 柠檬 75%

    柠檬 100%

  如果只有如上所述条件,那问从同一个袋子中连续拿到2个柠檬饼干,那么这个袋子最有可能是上述五个的哪一个?

我们首先采用最大似然估计来解这个问题,写出似然函数。假设从袋子中能拿出柠檬饼干的概率为p(我们通过这个概率p来确定是从哪个袋子中拿出来的),则似然函数可以写作

  

  由于p的取值是一个离散值,即上面描述中的0,25%,50%,75%,1。我们只需要评估一下这五个值哪个值使得似然函数最大即可,得到为袋子5。这里便是最大似然估计的结果。

上述最大似然估计有一个问题,就是没有考虑到模型本身的概率分布,下面我们扩展这个饼干的问题。

假设拿到袋子1或5的机率都是0.1,拿到2或4的机率都是0.2,拿到3的机率是0.4,那同样上述问题的答案呢?这个时候就变MAP了。我们根据公式

  

写出我们的MAP函数。

  

根据题意的描述可知,p的取值分别为0,25%,50%,75%,1,g的取值分别为0.1,0.2,0.4,0.2,0.1.分别计算出MAP函数的结果为:0,0.0125,0.125,0.28125,0.1.由上可知,通过MAP估计可得结果是从第四个袋子中取得的最高。

  上述都是离散的变量,那么连续的变量呢?假设为独立同分布的,μ有一个先验的概率分布为。那么我们想根据来找到μ的最大后验概率。根据前面的描述,写出MAP函数为:

  

  此时我们在两边取对数可知。所求上式的最大值可以等同于求

  

  的最小值。求导可得所求的μ为

  

  以上便是对于连续变量的MAP求解的过程。

在MAP中我们应注意的是:

MAP与MLE最大区别是MAP中加入了模型参数本身的概率分布,或者说。MLE中认为模型参数本身的概率的是均匀的,即该概率为一个固定值。

最大似然估计和最大后验估计

时间: 2024-08-09 19:35:00

最大似然估计和最大后验估计的相关文章

参数估计:最大似然估计、贝叶斯估计与最大后验估计

简介: 在概率统计中有两种主要的方法:参数统计和非参数统计(或者说参数估计和非参数估计). 其中,参数估计是概率统计的一种方法.主要在样本知道情况下,一般知道或假设样本服从某种概率分布,但不知到具体参数(或者知道具体模型,但不知道模型的参数). 参数估计就是通过多次试验,观察其结果,利用结果推出参数的大概值. (当你推出参数的极大可能值时,就相当于知道了分布及其参数情况,就可以利用它来推测其他样例出现的概率了. 这属于应用了) 参数估计的方法有多种,这里我们分析三种基于概率的方法,分别是最大似然

最大似然估计(MLE)和最大后验概率(MAP)

最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为

先验概率、最大似然估计、贝叶斯估计、最大后验概率

先验概率 先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率. 先验概率的分类 利用过去历史资料计算得到的先验概率,称为客观先验概率: 当历史资料无从取得或资料不完全时,凭人们的主观经验来判断而得到的先验概率,称为主观先验概率. 先验概率的条件 先验概率是通过古典概率模型加以定义的,故又称为古典概率.古典概率模型要求满足两个条件:(1)试验的所有可能结果是有限的;(2)每一种可

最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写一写很多童鞋们w未必完全理解的最大似然估计的部分. 单纯从原理上来说,最大似然估计并不是一个非常难以理解的东西.最大似然估计不过就是评估模型好坏的方式,它是很多种不同评估方式中的一种.未来准备写一写最大似然估计与它的好朋友们,比如说贝叶斯估计 (Beyasian Estimation), 最大后验估计(Max

最大似然估计和最大后验概率MAP

最大似然估计是一种奇妙的东西,我觉得发明这种估计的人特别才华.如果是我,觉得很难凭空想到这样做. 极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点.频率派认为,参数是客观存在的,只是未知而矣.因此,频率派最关心极大似然函数,只要参数求出来了,给定自变量X,Y也就固定了,极大似然估计如下所示: 相反的,贝叶斯派认为参数也是随机的,和一般随机变量没有本质区别,正是因为参数不能固定,当给定一个输入x后,我们不能用一个确定的y表示输出结果,必须用一个概率的方式表达出来,所以贝叶斯学派的预测值是一

最大似然估计总结

from http://blog.csdn.net/yanqingan/article/details/6125812 最大似然估计学习总结------MadTurtle   1. 作用 在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计. 2. 离散型 设为离散型随机变量,为多维参数向量,如果随机变量相互独立且概率计算式为P{,则可得概率函数为P{}=,在固定时,上式表示的概率:当已知的时候,它又变成的函数,可以把它记为,称此函数为似然

最大似然估计的复习(转)

转自:http://blog.csdn.net/yanqingan/article/details/6125812 最大似然估计学习总结------MadTurtle   1. 作用 在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计. 2. 离散型 设为离散型随机变量,为多维参数向量,如果随机变量相互独立且概率计算式为P{,则可得概率函数为P{}=,在固定时,上式表示的概率:当已知的时候,它又变成的函数,可以把它记为,称此函数为似然函数

最大似然估计 (MLE) 最大后验概率(MAP)

1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,那么有 为了

最小二乘法和最大似然估计的联系和区别(转)

对于最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小.而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大.显然,这是从不同原理出发的两种参数估计方法. 在最大似然法中,通过选择参数,使已知数据在某种意义下最有可能出现,而某种意义通常指似然函数最大,而似然函数又往往指数据的概率分布函数.与最小二乘法不同的是,最大似然法需要已知这个概率分布函