BZOJ 1413 取石子游戏(DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1413

题意:n堆石子排成一排。每次只能在两侧的两堆中选择一堆拿。至少拿一个。谁不能操作谁输。

思路:参考这里

int f1[N][N],f2[N][N],n,a[N];

void deal()
{
    RD(n);
    int i,j,k;
    FOR1(i,n) RD(a[i]),f1[i][i]=f2[i][i]=a[i];
    int p,q,x;
    for(k=2;k<=n;k++) for(i=1;i+k-1<=n;i++)
    {
        j=i+k-1;

        p=f1[i][j-1]; q=f2[i][j-1]; x=a[j];
        if(x==q) f1[i][j]=0;
        else if(x<p&&x<q||x>p&&x>q) f1[i][j]=x;
        else if(p<q) f1[i][j]=x+1;
        else f1[i][j]=x-1;

        p=f2[i+1][j]; q=f1[i+1][j]; x=a[i];
        if(x==q) f2[i][j]=0;
        else if(x<p&&x<q||x>p&&x>q) f2[i][j]=x;
        else if(p<q) f2[i][j]=x+1;
        else f2[i][j]=x-1;
    }
    if(n==1) puts("1");
    else PR(f2[1][n-1]!=a[n]);
}

int main()
{
    rush() deal();
}

BZOJ 1413 取石子游戏(DP),布布扣,bubuko.com

时间: 2024-10-10 00:32:04

BZOJ 1413 取石子游戏(DP)的相关文章

BZOJ 1874 取石子游戏 (NIM游戏)

题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include const int N=1005; int SG[N],b[N],hash[N],a[N],sum,tmp,i,j,n,m; void FSG(int s){ SG[0]=0; for(int i=1;i<=s;i++){ for(int j=1;b[j]<=i&&j<=m;j++)hash[SG[i-b[j]]]=i; for(int j

bzoj 1874 取石子游戏 题解 &amp; SG函数初探

[原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved: 122 [Submit][Status] Description 小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有,第一步如何取石子. In

bzoj 1874 取石子游戏 题解 &amp;amp; SG函数初探

[原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved: 122 [Submit][Status] Description 小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这种,每一个人每次能够从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,假设有,第一步怎样取石子. In

BZOJ 1978 取数游戏(DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1978 题意:给出一个数列a,在其中找出下标依次增大的数,使得任意相邻的两个数的最大公约数大于等于m.找出最多的数字. 思路:f[i]表示前面的数字中最大公约数为i可以找出的最多的数字个数.那么对于当前数字x: 接着更新f: int f[N],a[N]; int n,m; int main() { RD(n,m); int i; FOR1(i,n) RD(a[i]); int j,k;

BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]

小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有,第一步如何取石子. N≤10 Ai≤1000 裸SG函数啊 然而我连SG函数都不会求了,WA了一会儿之后照别人代码改发现vis公用了... #include <iostream> #include <cstdio> #include <cstring> #includ

【BZOJ 1874】 [BeiJing2009 WinterCamp]取石子游戏

1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 473  Solved: 186 [Submit][Status] Description 小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有,第一步如何取石子. Input 输

BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)

Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description 小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子, 每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如果有 ,第一步如何取石子. Input 输入文件的第一行为石子的堆数N 接下来N行,每行一个数A

poj 1067||hdu 1527 取石子游戏(博弈论,Wythoff Game)

取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37893   Accepted: 12684 Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者

HDU 1527 取石子游戏 威佐夫博弈

题目来源:HDU 1527 取石子游戏 题意:中文 思路:威佐夫博弈 必败态为 (a,b ) ai + i = bi     ai = i*(1+sqrt(5.0)+1)/2   这题就求出i然后带人i和i+1判断是否成立 以下转自网上某总结 有公式ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,-,n 方括号表示取整函数) 其中出现了黄金分割数(1+√5)/2 = 1.618-,因此,由ak,bk组成的矩形近似为黄金矩形 由于2/(1+√5)=(√5-1)/2,可以先