ZigBee教室照明监控系统设计

    随着教育的发展, 学校对硬件投入加大, 校园照明系统不断扩大,在带来绚丽和方便的同时, 也带来了费用高、管理难、故障汇报慢等问题。一套高效的照明监控系统可以大大节省人力财力。当今无线通信技术、自动控制技术快速发展, 为集中控制每一盏灯、远程识别故障灯、测控各种电参数及选用多种控制策略为一体的教室智能照明控制系统提供了技术支撑。

1 ZigBee 简介

    2009 年济南园博园已经实现了小范围内基于ZigBee 的路灯和景观灯监控,基于ZigBee数传技术的照明监控系统将是未来照明监控系统的一个主要发展方向。ZigBee数传是一种新兴的短距离、低速率、低成本、低复杂度的无线通信技术, 目前在近距离无线网络领域得到了广泛应用。它是基于IEEE802.15.4 标准的低功耗无线个人局域网协议, 可工作在免费的2.4 GHz 公共频段, 传输速率为10 Kbps~250 Kbps, 单节点实际传输距离根据发送功率大小和应用模式而定,在无遮挡情况下能达到100 m以上。ZigBee 可以组成高可靠性的Mesh 网, 不仅能自组织, 而且能够自恢复, 保证了系统整体稳定性。ZigBee无线模块实行严格的功率管理机制,主要通过降低收发信机的忙闲以及数据传输的频率来降低开销,例如关机及睡眠模式。以上特点, 正好符合对离散分布的照明灯具进行组网的需要。

    ZigBee 协议定义了3 种设备 , 即全功能设备(FFD)、精简功能设备(RFD)和网络协调器设备。具备控制器的功能RFD 在网络中通常作为终端节点,相互之间不能直接通信, 只能与FFD 或协调器通信。FFD 除具有RFD 功能外, 一般可用作网络路由节点。网络协调器实际上是FFD的一种, 只是拥有更多的计算能力和系统资源, 它在网络组建中担任协调者,负责建立网络, 并与其它的FFD 或RFD 连接。

2 系统设计

2.1网络结构

    Zigbee无线模块网络支持三种拓扑结构: 星型、树状型、网状型。在星型结构中协调器在中心发挥协调作用,所有节点只与协调器通信, 其它节点可以是FFD, 也可以是RFD; 在树状型网络中有多个FFD和RFD, 远距离终端节点只能经过FFD 路由才能与协调器通信;在网状结构中存在多个路由节点和终端节点, 任意两个路由节点可互相通信, 终端节点则只能经路由节点与协调器通信。

    由于教学楼内环境相对复杂, 信号遮挡较多, 呈现出空间立体特点,故采用网状拓扑结构进行组网。为了能够保证Zigbee无线模块网络有效连通性, 在每层楼楼梯口等通信效果较好的地方要放置一个Zigbee无线模块路由节点, 以此来实现两层楼之间的路由。以每间教室为单元,设置一个路由节点, 这样避免一个教室出现故障而导致整个网络瘫痪的现象, 在距离协调器最近端和最远端的教室可以设置RFD 节点。为避免信号因穿墙而减弱,可以将节点模块安装在教室外墙,该节点通过扩展与各个灯组的传感器和继电器进行连接。

    监控中心由计算机和协调器组成, 具有遥测、遥控、存储和管理数据功能,可以对整个教学楼照明系统进行实时监控。协调器主要负责建立、管理和维护网络, 同时接收各个路由节点的信息, 然后通过串口将数据发给计算机, 在计算机终端显示实时状况并发送控制命令。路由节点具有终端控制、信息采集、自动报警的功能。

2.2硬件设计

教室节点主要由ZigBee无线模块、传感器、继电器及扩展/选择电路组成,硬件结构如图1 所示。

图1 教室节点硬件结构图

    ZigBee无线模块采用CC2530 作为控制电路核心,该芯片是专门针对2.4G IEEE 802.15.4、ZigBee和RF4CE 应用的片上系统解决方案, 其特点是以极低的总材料成本建立较为强大的网络节点 。芯片内部已经集成了一个8051 微处理器与高性能RF 收发器, 并集成了模数转换、ZigBee射频前端、定时器等模块。系统内可编程闪存最高可达128KB, 同时具有多种运行模式, 且运行模式之间的转换时间很短, 进一步降低能源消耗。而一个CC2530 只有21个I/O引脚, 无法达到分别控制并采集信号的要求,在此可以通过扩展/选择电路来实现对多个灯的控制或信号采集。对于灯较多的教室, 可以分配两个或三个节点。

    大学教室在上课或自习时人员分布不一, 且面积较大, 灯下各处的光照度也不一样,所以每个灯都安装人体探测器和光照度传感器进行ZigBee数据采集, 微处理器根据检测到的是否有人和自然光光照度来进行开关灯操作。人体探测器和光照度传感器的设计在此不作为设计重点。

    无线信号在教学楼内传输时对发射功率和接收信号的灵敏度要求较高,虽然相邻两个教室节点距离很近, 但是在转角或者上下楼层的地方CC2530不一定能够满足通信要求, 要解决这一问题, 可以在CC2530 工作电路中加入CC2591射频前端来提高输出功率和接收灵敏度, 从而达到增加传输距离的目的。CC2591 通过一个功率放大器以增加输出功率, 并通过一个低噪声放大器改进接收灵敏度。它采用4mm ×4mm QFN16 小尺寸封装, 模块集成了功率放大器、低噪声放大器、收发切换开关、非平衡变压器和逻辑电路等高性能模块。CC2530 射频输入/输出端具有高阻抗、差分的特性, 在设计终端节点时, 使用巴伦天线的布线方式来作为非平衡变压器, 而CC2591 内部本身就存在一个巴伦结构的非平衡变压器和一个匹配网络,由此可以实现CC2591 到CC2530 的无缝接口。

2.3软件设计

    系统启动后, 首先进行初始化并由协调器组建ZigBee 网络,组建成功后, 各节点将ZigBee数据采集到的数据经过路由节点发送至协调器, 然后传至计算机, 再保存在数据库中, 管理员可根据实际情况进行开关灯操作, 由于使用了扩展/选择电路,可以具体到每一盏灯。一般情况下系统处于自动控制状态。教室节点在每天教室关闭后进入休眠状态以降低功耗,在教室打开后进入工作状态, 微处理器轮询各个灯的传感器输出端,根据各个灯的光照度和人员情况进行开关灯控制。如发生报警, 如教室电流过高,则向监控中心发送报警信息以待确认和检修。节点自动控制流程图如图2 所示。

图2 教室节点自动控制流程图

    本系统采用C/S 模式, 以Microsoft VisualStudio2010 为监控软件开发平台, C#语言编制, 数据库使用SQL Server 2008, 上位机软件主要功能是实时接收由串口传递的数据并加以分包、计算、处理、显示以及保存,通过响应管理员指令, 可对终端灯节点进行控制、配置、查询。上位机主界面如图3 所示,

图3 教室监控界面

    主要功能包括:显示与监控: 实现对每个教室电压、电流、功率等数据采集; 可以按楼层选择, 查看当前功率、用电量、报警或故障; 实现分区域开关及单灯开关的控制;

数据查询: 节点配置信息与各教室状态信息均保存在数据库中,方便管理员查询历史数据; 并能形成电流、电压等电量报表和运行日志报表;

参数配置: 包括校正系统时间、设置zigbee 节点短地址和各项报警参数,管理员设置好参数后,系统后台将通过协调器发送到各个节点。教室监控界面如图3 所示。

3 结论

    此系统具有两个显著优势: 一是控制方便, 监控中心能控制到具体的每一盏灯,每一盏灯的状态也能在控制中心得到显示, 还可以根据实际需要提花灵活多样的控制方案, 以满足不同的场景照明需要。当通信网络某一节点故障时, 其他ZigBee数传模块节点不会受到影响,而故障节点还可以手动进行开关操作; 二是成本低, 只安装两个光感传感器, 用于ZigBee数据采集实时外界光照度, 全程采用ZigBee无线模块通信, 无需布线、易安装且运行后无通信费用。本系统可以有效地实现教室照明系统科学高效的控制和资源整合,最终实现节能的目的, 有着广阔的应用前景。

时间: 2024-10-04 19:02:53

ZigBee教室照明监控系统设计的相关文章

ZigBee红外远程监控系统设计

现代安防监控越来越受到重视.它一般由图像采集.传输和存储系统组成.采用高精度的摄像头配合先进的图像处理技术和传输技术.其安防监控性能虽然很好,但也存在投资成本大,实时报警性能差.数据量大,隐蔽性差等缺点.鉴于这些不足,某些应用场合也可以用红外监控作为监控手段. 红外探测器自1800年被首次制作出来以后,经过两百多年的发展,技术已经十分成熟.它是指将不可见的红外辐射光探测出来,并且转化为可测量的信号的技术,具有适应性好,隐蔽性好,保密性强,性能稳定等优点.通过对特定波段的红外射线的探测,就可以实现

ZigBee温室环境监控系统设计

1 引言 在温室农业生产过程中,温度与湿度等环境参数直接影响到作物的生长.因此,环境的监测与控制是保证温室生产优质高效的重要手段.而大部分的温室监控系统采用PLC温室控制和现场总线控制系统,这些系统具有布线费时.抗干扰性差和成本高的缺点,制约了其推广应用.再加上目前针对特定地区(如我国最北部地区)气候存在着温度低.昼夜温差大.光照强度大等条件研究较少,使得环境监测的可靠性.稳定性成为急需解决的问题. 结合实地考察与测量,引入ZigBee数传技术到温室栽培中,建立温室环境监控系统,可以极大的节省劳

基于ZigBee的放射源监控系统研究

我国是放射性同位素生产和使用大国,随着市场经济的发展和各个领域的进一步开放,放射源已经广泛应用于工业.农业.医学.资源.环境.军事.科学研究等领域.放射源在给我们带来巨大技术进步与经济效益的同时,其辐射安全与放射性污染等问题也越来越突出. 近年来,放射源丢失.被盗等事故时有发生:一些用源单位不按国家规定,违规超标使用或私自转移放射源,造成较大的安全隐患.放射源的安全使用和科学监管已成为当前环保工作的难点和重点. 近几年发达国家对环境辐射连续监测的投入有明显加强,如美国EML实验室的SASP监测网

51单片机-PC数据传输 温度 距离 监控系统设计

>_<:功能概述: 通过串口PC和单片机通信,可以询问单片机测得的温度,可以询问声呐测距的测量距离,同时把测量温度显示在数码管上. >_<:PC部分 这里com.cpp和com.h是串口通信的函数封装,在主函数中: 刚开始调用封装好的串口通信函数,设置打开串口COM4,波特率设置为9600,超时设置: 1 if(openport("com4")) 2 printf("open comport success\n"); 3 if(setupdc

在线公开课 | 京东云监控系统设计及落地之路

谈运维为什么离不开监控?典型监控系统一般是如何设计的?业务驱动的高可用监控系统又有何不同?作为巨头之一的电商平台京东, 其基于京东云的监控系统是否有值得借鉴的地方?本文将解答这些问题.本文整理自 10 月 30 日由京东云开发者社区和英特尔联合举办的在线公开课,京东云工具产品研发部专家架构师颜志杰的在线课程演讲--业务驱动监控系统设计与落地. 世上没有百分百可靠的系统,程序.机器.网络都可能在运行中出现问题,进而导致服务异常, 带来金钱及品牌的损失,所以监控目标就是降低损失,通过发现.定位.解决

ZigBee智能仓库监控系统

目前,物联网(IOT)技术在世界范围内受到广泛关注,对此各国都投入大量的人力物力,掀起了继计算机.互联网之后第三次信息产业浪潮.美国.中国.欧洲各国.日本.韩国等都对IOT技术进行了大量研究,实施了很多研究计划.随着经济的快速发展,工厂和物流库房数量大幅度增加,且储存货物的种类及规模也日益增大.这给仓库环境监测与物品安全管理提出了更高要求. 在这样的背景下,国内外的专家和学者开展了基于IOT技术的仓库管理系统研究.目前,物联网技术只是应用于仓库管理方面,尽管仓库的环境检测能够实现实时.有效的监控

ZigBee室内采暖计费系统设计

节能减排是我国长远的政策方针,而对于供热行业来说,节能的潜力又是巨大的.长期以来,我国城市室内采暖系统在设计上基本上都采用单管水平串联的系统方案进行设计,然而该方案不便于住户进行热量调节,并且现今绝大部分的暖气费用是按面积进行集中收取,存在很大的不合理性,这两个主要因素造成了极大的供热用热浪费.随着人们生活水平的不断提高和供暖行业的不断发展,对供暖系统实现分户计量和独立控制的呼声越来越高,本文针对分户计量中的无线测温系统提供一个可靠的设计方案. ZigBee数传技术是一种短距离.低功耗.低复杂度

监控系统设计

随着系统业务复杂度的提升,系统复杂度提升,需要对整个系统的功能.性能.可用性,以及服务. web.webservice.网页等等多个角度进行监控. 监控设计为两个部分一部分为监控客户端部分,应用调用jar包或其他形式实现对单机节点的监控. 通过上报汇总的形式实现对大规模集群实现,非实时监控一般晚于1到5分钟的状况可以监控到.

简易网络性能监控系统设计

需求描述: 笔者的公司目前面临这样的情况,在国内有七八家分公司,分公司与总公司之间通过MPLS-VPN来进行连接.如何实时的掌握总公司与分支机构之间的网络状态是笔者目前面临的一个问题.经常会遇到用户反映网络慢,无法收到邮件的问题.因MPLS线路属于电信托管,本地IT没有权限查看路由器状态. 处理方案: 根据目前的实际,笔者决定采用Ping的方式,记录实时的Ping值,通过Ping值的收集,来对网络性能进行判断.从一台监控主机向各个地点发送Ping请求,根据各地的返回值,保存到数据库中.同时,根据