http://poj.org/problem?id=2155
Matrix
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 18769 | Accepted: 7078 |
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a ‘0‘ then change it into ‘1‘ otherwise change
it into ‘0‘). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2
y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
Sample Input
1 2 10 C 2 1 2 2 Q 2 2 C 2 1 2 1 Q 1 1 C 1 1 2 1 C 1 2 1 2 C 1 1 2 2 Q 1 1 C 1 1 2 1 Q 2 1
Sample Output
1 0 0 1
Source
POJ Monthly,Lou Tiancheng
题意:二维矩阵,可以把子矩阵反转,查询某点的状态。
题解:二维树状数组可搞。
属于树状数组的第二类应用,区间修改单点查值。
(2)“改段求点”型,即对于序列A有以下操作:
【1】修改操作:将A[l..r]之间的全部元素值加上c;
【2】求和操作:求此时A[x]的值。
这个模型中需要设置一个辅助数组B:B[i]表示A[1..i]到目前为止共被整体加了多少(或者可以说成,到目前为止的所有ADD(i, c)操作中c的总和)。
则可以发现,对于之前的所有ADD(x, c)操作,当且仅当x>=i时,该操作会对A[i]的值造成影响(将A[i]加上c),又由于初始A[i]=0,所以有A[i] = B[i..N]之和!而ADD(i, c)(将A[1..i]整体加上c),将B[i]加上c即可——只要对B数组进行操作就行了。
这样就把该模型转化成了“改点求段”型,只是有一点不同的是,SUM(x)不是求B[1..x]的和而是求B[x..N]的和,此时只需把ADD和SUM中的增减次序对调即可(模型1中是ADD加SUM减,这里是ADD减SUM加)。代码:
void ADD(int x, int c) { for (int i=x; i>0; i-=i&(-i)) b[i] += c; } int SUM(int x) { int s = 0; for (int i=x; i<=n; i+=i&(-i)) s += b[i]; return s; }
操作【1】:ADD(l-1, -c); ADD(r, c);
操作【2】:SUM(x)。
对于这道题,就是变为二维的而已,取反操作可以看成+1,最后就看是否整除2即可。
比如操作x1,y1,x2,y2的子矩形,就是
add(x2,y2,1);
add(x1-1,y2,-1);
add(x2,y1-1,-1);
add(x1-1,y1-1,1);
画个图想想就知道了。
代码:
/** * @author neko01 */ //#pragma comment(linker, "/STACK:102400000,102400000") #include <cstdio> #include <cstring> #include <string.h> #include <iostream> #include <algorithm> #include <queue> #include <vector> #include <cmath> #include <set> #include <map> using namespace std; typedef long long LL; #define min3(a,b,c) min(a,min(b,c)) #define max3(a,b,c) max(a,max(b,c)) #define pb push_back #define mp(a,b) make_pair(a,b) #define clr(a) memset(a,0,sizeof a) #define clr1(a) memset(a,-1,sizeof a) #define dbg(a) printf("%d\n",a) typedef pair<int,int> pp; const double eps=1e-9; const double pi=acos(-1.0); const int INF=0x3f3f3f3f; const LL inf=(((LL)1)<<61)+5; const int N=1005; int bit[N][N]; int n; int sum(int x,int y) { int s=0; for(int i=x;i<=n;i+=i&-i) for(int j=y;j<=n;j+=j&-j) s+=bit[i][j]; return s; } void add(int x,int y,int val) { for(int i=x;i>0;i-=i&-i) for(int j=y;j>0;j-=j&-j) bit[i][j]+=val; } int main() { int t; scanf("%d",&t); while(t--) { int q; scanf("%d%d",&n,&q); clr(bit); while(q--) { char s[5]; scanf("%s",s); int x1,x2,y1,y2; if(s[0]=='C') { scanf("%d%d%d%d",&x1,&y1,&x2,&y2); add(x2,y2,1); add(x1-1,y2,-1); add(x2,y1-1,-1); add(x1-1,y1-1,1); } else { scanf("%d%d",&x1,&y1); printf("%d\n",sum(x1,y1)%2); } } puts(""); } return 0; }