string (KMP+期望DP)

Time Limit: 1000 ms   Memory Limit: 256 MB

Description

   给定一个由且仅由字符 ‘H‘ , ‘T‘ 构成的字符串$S$.

  给定一个最初为空的字符串$T$ , 每次随机地在$T$的末尾添加 ‘H‘ 或者 ‘T‘ .

  问当$S$为$T$的后缀时, 在末尾添加字符的期望次数.

Input

  输入只有一行, 一个字符串$S$.

Output

  输出只有一行, 一个数表示答案.

  为了防止运算越界, 你只用将答案对$10^9+7$取模.

Sample Input

Sample Output

HTHT
20

题解

   题目的本质其实就是:从左到右一位一位填字符(0或1,概率都为$0.5$),如果当前字符不满足目标串的相应字符,就要退回到之前的某一位继续匹配,求成功填满整个字符串的期望填充次数。

   其中,“退回”的操作,实际上是为了满足题目所说的“后缀”,这点要清楚,失配后不会从头开始,而是从类似KMP的next位置继续匹配。

 

支持数组:

  那么我们对$S$预处理正常KMP的next数组,和一个数组$g[i][j]$ $(j=0,1)$,表示已正确填好前$i$位字符,第$i+1$位字符填了$j$后,匹配的位置。

  设第$i+1$位正确的字符为$x$,那么有

     $g[i][x]=i+1$

   $g[i][x\text^1]=g[next[i]][x\text^1]$

    如果当前第$i$位我们填入$y$,那么下一步我们就应该从$g[i-1][y]$处开始匹配。

  

期望DP:

  设$f_i$表示当前前$i$位已正确填充好,成功填入下一位$i+1$的期望填充次数,$wrong$为$i+1$位的错误字符。

  转移即为:

  

  $\begin{aligned}
  f_i&=0.5*1+0.5*(1+\sum_{j=g[i][wrong]}^{i}f_j)\\
  f_i&=0.5*1+0.5*(1+f_i+\sum_{j=g[i][wrong]}^{i-1}f_j)\\
  \frac{1}{2}f_i&=0.5*1+0.5*(1+\sum_{j=g[i][wrong]}^{i-1}f_j)\\
  f_i&=2+\sum_{j=g[i][wrong]}^{i-1}f_j
  \end{aligned}$

  第一行什么意思呢?

  我们有$0.5$的概率$1$次填上对的字符;

  也有$0.5$的概率填充$1$次,结果填错了,蹦回$g[i][wrong]$,再一路走到$i+1$。

  

  我们边算期望边处理一个前缀和$sum_i=\sum\limits_{j=0}^{i-1}f_j$,这样公式中求和的部分就变成了:

  $f_i=2+sum_{i}-sum_{g[i][wrong]}$

  答案也就是$sum_{len(S)}$,从$0$一路走到$S$的最后。

  时空复杂度$O(n)$



 1 #include <cstdio>
 2 #include <cstring>
 3 using namespace std;
 4 typedef long long ll;
 5 const int N=1000010,Mod=1e9+7;
 6 char inp[N];
 7 int n,s[N],g[N][2],nex[N];
 8 ll sum[N];
 9 ll max(ll x,ll y){return x>y?x:y;}
10 void kmp(){
11     nex[1]=0;
12     for(int i=2,j;i<=n;i++){
13         j=nex[i-1];
14         while(j&&s[j+1]!=s[i]) j=nex[j];
15         if(s[j+1]==s[i]) nex[i]=j+1;
16         else nex[i]=0;
17     }
18     for(int i=0;i<n;i++){
19         g[i][s[i+1]]=i+1;
20         g[i][s[i+1]^1]=g[nex[i]][s[i+1]^1];
21     }
22 }
23 int main(){
24     scanf("%s",inp+1);
25     n=strlen(inp+1);
26     for(int i=1;i<=n;i++) s[i]=inp[i]==‘T‘;
27     kmp();
28     ll f;
29     sum[1]=2;
30     for(int i=1;i<n;i++){
31         f=(sum[i]+Mod-sum[g[i][s[i+1]^1]]+2)%Mod;
32         sum[i+1]=(sum[i]+f)%Mod;
33     }
34     printf("%lld\n",sum[n]);
35     return 0;
36 }

奇妙代码

时间: 2024-12-20 15:19:11

string (KMP+期望DP)的相关文章

HDOJ 1145 So you want to be a 2n-aire? 期望DP

期望DP So you want to be a 2n-aire? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 267    Accepted Submission(s): 197 Problem Description The player starts with a prize of $1, and is asked a seq

HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由于得到每张卡片的状态不知道,所以用状态压缩,dp[i] 表示这个状态时,要全部收齐卡片的期望. 由于有可能是什么也没有,所以我们要特殊判断一下.然后就和剩下的就简单了. 另一个方法就是状态压缩+容斥,同样每个状态表示收集的状态,由于每张卡都是独立,所以,每个卡片的期望就是1.0/p,然后要做的就是要去重,既然

【期望DP】

[总览] [期望dp] 求解达到某一目标的期望花费:因为最终的花费无从知晓(不可能从$\infty$推起),所以期望dp需要倒序求解. 设$f[i][j]$表示在$(i, j)$这个状态实现目标的期望值(相当于是差距是多少). 首先$f[n][m] = 0$,在目标状态期望值为0.然后$f = (\sum f' × p) + w $,$f'$为上一状态(距离目标更近的那个,倒序),$p$为从$f$转移到$f'$的概率(则从$f'$转移回$f$的概率也为$p$),w为转移的花费. 最后输出初始位置

POJ 2096 Collecting Bugs:期望dp

题目链接:http://poj.org/problem?id=2096 题意: 有一个程序猿,他每天都会发现一个bug. bug共有n个种类.属于某一个种类的概率为1/n. 有s个子系统,每个bug属于一个系统.属于某一个系统的概率为1/s. 问你发现的bug能够覆盖到n个种类和s个系统的期望天数. 题解: 期望dp转移的套路: 倒着推. 利用性质:期望 = ∑ (P(子期望)*φ(子期望)) 状态表示: dp[i][j] = expectation i:覆盖到i个种类 j:覆盖到j个系统 dp

HDU4405(期望DP)

又一道期望DP,其实这题与hdu4576那道概率DP很像(这道我也写了题解).那么这两道一道求概率,一道求期望,又能放在一起对比一下了,期望和概率的求法的不同. 先总结一句话:一般求概率DP或者是递推的问题,都是正着推,从初始状态往结束状态(结束状态一般是此类题要求的状态)推,所以先得到(或者说先已知)的是靠近初始状态的状态,所以想要求的当前状态是由可转移到此状态的前N可能个状态推过来的:而一般求期望DP,都是逆着推,从结束状态往初始状态(初始状态往往是此类题要求的状态)推,所以先得到(或者说先

【高斯消元】兼 【期望dp】例题

[总览] 高斯消元基本思想是将方程式的系数和常数化为矩阵,通过将矩阵通过行变换成为阶梯状(三角形),然后从小往上逐一求解. 如:$3X_1 + 2X_2 + 1X_3 = 3$ $              X_2 + 2X_3 = 1$ $2X_1 + X_3 = 0$ 化为矩阵为:--->----->-----> 然后就可以通过最后一行直接求出$X_3 = ...$,将其带回第二行,算出$X_2$,同理算出$X_1$. 代码很好理解: inline void gauss(){ int

HDU 4405 概率期望DP

有 0到 n 个格子.掷骰子走路,求出到终点的数学期望,有飞行的路线. dp[i] 存储在i位置走到终点的期望. 转移方程dp[i]=(dp[i+1] ----> dp[i+6])/6+1; 有飞行路线则直接赋值 #include "stdio.h" #include "string.h" double dp[100010]; int hash[100010]; int main() { int n,m,x,y,i,j; while (scanf("

uva11600 状压期望dp

一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都是安全的 dp[u][s] 为当前在u,走过的联通块为s的期望天数 那么走到剩下没有走过的连通块的概率是   (n-have)/(n-1),  那么平均需要的时间是  (n-1)/(n-have), 走到下一个没有走过的连通块的概率为cnt[i] / (n-have) 所以dp[u][s] = (n

概率和期望DP

概率和期望DP(整理) 概率DP顺着推,期望DP逆着递推求解 概率,又称或然率.机会率.机率(几率)或可能性,是概率论的基本概念.概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小.越接近1,该事件更可能发生:越接近0,则该事件更不可能发生.人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例. 期望就是加权平均. 1.期望值是指人们对所实现的目标主观上的一种估计: 2.期望值是指人们对自己的行为和努力能否导致所企求之