R语言学习路线图-转帖

本文分为6个部分,分别介绍初级入门,高级入门,绘图与可视化,计量经济学,时间序列分析,金融等。

1.初级入门

《An Introduction to R》,这是官方的入门小册子。其有中文版,由丁国徽翻译,译名为《R导论》《R4Beginners》,这本小册子有中文版应该叫《R入门》。除此之外,还可以去读刘思喆《153分钟学会R》。 这本书收集了R初学者提问频率最高的153个问题。为什么叫153分钟呢?因为最初作者写了153个问题,阅读一个问题花费1分钟时间,全局下来也就是 153分钟了。有了这些基础之后,要去读一些经典书籍比较全面的入门书籍,比如《统计建模与R软件》,国外还有《R Cookbook》和《R in action》,本人没有看过,因此不便评论。

最后推荐,《R in a Nutshell》。对,“果壳里面的R”!当然,是开玩笑的,in a Nutshell是俚语,意思大致是“简单的说”。目前,我们正在翻译这本书的中文版,大概明年三月份交稿!这本书很不错,大家可以从现在开始期待,并广而告知一下!

2.高级入门

读 了上述书籍之后,你就可以去高级入门阶段了。这时候要读的书有两本很经典的。《Statistics with R》和《The R book》。之所以说这两本书高级,是因为这两本书已经不再限于R基础了,而是结合了数据分析的各种常见方法来写就的,比较系统的介绍了R在线性回归、方 差分析、多元统计、R绘图、时间序列分析、数据挖掘等各方面的内容,看完之后你会发现,哇,原来R能做的事情这么多,而且做起来是那么简洁。读到这里已经 差不多了,剩下的估计就是你要专门攻读的某个方面内容了。下面大致说一说。

3.绘图与可视化

亚里斯多德说,“较其他感觉而言,人类更喜欢观看”。因此,绘图和可视化得到很多人的关注和重视。那么,如何学习R画图和数据可视化呢?再简单些,如何画直方图?如何往直方图上添加密度曲线呢?我想读完下面这几本书你就大致会明白了。

首 先,画图入门可以读《R Graphics》,个人认为这本是比较经典的,全面介绍了R中绘图系统。该书对应的有一个网站,google之就可以了。更深入的可以读 《Lattice:Multivariate Data Visualization with R》。上面这些都是比较普通的。当然,有比较文艺和优雅的——ggplot2系统,看《ggplot2:Elegant Graphics for Data Analysis》。还有数据挖掘方面的书:《Data Mining with Rattle and R》,主要是用Rattle软件,个人比较喜欢Rattle!当然,Rattle不是最好的,Rweka也很棒!再有就是交互图形的书了,著名的交互系统 是ggobi,这个我已经喜欢两年多了,关于ggobi的书有《Interactive and Dynamic Graphics for Data Analysis With R and GGobi》,不过,也只是适宜入门,更多更全面的还是去ggobi的主页吧,上面有各种资料以及包的更新信息!

特别推荐一下,中文版绘图书籍有谢益辉的《现代统计图形》。

4.计量经济学

关 于计量经济学,首先推荐一本很薄的小册子:《Econometrics In R》,做入门用。然后,是《Applied Econometrics with R》,该书对应的R包是AER,可以安装之后配合使用,效果甚佳。计量经济学中很大一部分是关于时间序列分析的,这一块内容在下面的地方说。

5.时间序列分析

时 间序列书籍的书籍分两类,一种是比较普适的书籍,典型的代表是:《Time Series Analysis and Its Applications :with R examples》。该书介绍了各种时间序列分析的经典方法及实现各种经典方法的R代码,该书有中文版。如果不想买的话,建议去作者主页直接下载,英文版 其实读起来很简单。时间序列分析中有一大块儿是关于金融时间序列分析的。这方面比较流行的书有两本《Analysis of financial time series》,这本书的最初是用的S-plus代码,不过新版已经以R代码为主了。这本书适合有时间序列分析基础和金融基础的人来看,因为书中关于时间 序列分析的理论以及各种金融知识讲解的不是特别清楚,将极值理论计算VaR的部分就比较难看懂。另外一个比较有意思的是Rmetrics推出的 《TimeSeriesFAQ》,这本书是金融时间序列入门的东西,讲的很基础,但是很难懂。对应的中文版有《金融时间序列分析常见问题集》,当然,目前 还没有发出来。经济领域的时间序列有一种特殊的情况叫协整,很多人很关注这方面的理论,关心这个的可以看《Analysis of Integrated and Cointegrated Time Series with R》。最后,比较高级的一本书是关于小波分析的,看《Wavelet Methods in Statistics with R》。附加一点,关于时间序列聚类的书籍目前比较少见,是一个处女地,有志之士可以开垦之!

6.金融

金 融的领域很广泛,如果是大金融的话,保险也要被纳入此间。用R做金融更多地需要掌握的是金融知识,只会数据分析技术意义寥寥。我觉得这些书对于懂金融、不 同数据分析技术的人比较有用,只懂数据分析技术而不动金融知识的人看起来肯定如雾里看花,甚至有人会觉得金融分析比较低级。这方面比较经典的书籍有: 《Advanced Topics in Analysis of Economic and Financial Data Using R》以及《Modelling Financial Time Series With S-plus》。金融产品定价之类的常常要用到随机微分方程,有一本叫《Simulation Inference Stochastic Differential Equations:with R examples》的书是关于这方面的内容的,有实例,内容还算详实!此外,是风险度量与管理类。比较经典的有《Simulation Techniques in Financial Risk Management》、《Modern Actuarial Risk Theory Using R》和《Quantitative Risk Management:Concepts, Techniques and Tools》。投资组合分析类和期权定价类可以分别看《Portfolio Optimization with R》和《Option Pricing and Estimation of Financial Models with R》。

7.数据挖掘

这方面的书不多,只有《Data Mining with R:learing with case studies》。不过,R中数据挖掘方面的包已经足够多了,参考包中的帮助文档就足够了。

8.附注

出于版权等事宜的考虑,我无法告知你说在“新浪爱问”等地方可以直接免费下载到上面提到的这些书,但是,我想你可以发挥自己的聪明才智去体悟!

与数据挖掘有关或者有帮助的R包和函数的集合。
1、聚类
常用的包: fpc,cluster,pvclust,mclust
基于划分的方法: kmeans, pam, pamk, clara
基于层次的方法: hclust, pvclust, agnes, diana
基于模型的方法: mclust
基于密度的方法: dbscan
基于画图的方法: plotcluster, plot.hclust
基于验证的方法: cluster.stats

2、分类
常用的包:
rpart,party,randomForest,rpartOrdinal,tree,marginTree,
maptree,survival
决策树: rpart, ctree
随机森林: cforest, randomForest
回归, Logistic回归, Poisson回归: glm, predict, residuals
生存分析: survfit, survdiff, coxph

3、关联规则与频繁项集
常用的包:
arules:支持挖掘频繁项集,最大频繁项集,频繁闭项目集和关联规则
DRM:回归和分类数据的重复关联模型
APRIORI算法,广度RST算法:apriori, drm
ECLAT算法: 采用等价类,RST深度搜索和集合的交集: eclat

4、序列模式
常用的包: arulesSequences
SPADE算法: cSPADE
5、时间序列
常用的包: timsac
时间序列构建函数: ts
成分分解: decomp, decompose, stl, tsr

6、统计
常用的包: Base R, nlme
方差分析: aov, anova
密度分析: density
假设检验: t.test, prop.test, anova, aov
线性混合模型:lme
主成分分析和因子分析:princomp

7、图表
条形图: barplot
饼图: pie
散点图: dotchart
直方图: hist
密度图: densityplot
蜡烛图, 箱形图 boxplot
QQ (quantile-quantile) 图: qqnorm, qqplot, qqline
Bi-variate plot: coplot
树: rpart
Parallel coordinates: parallel, paracoor, parcoord
热图, contour: contour, filled.contour
其他图: stripplot, sunflowerplot, interaction.plot, matplot, fourfoldplot,
assocplot, mosaicplot
保存的图表格式: pdf, postscript, win.metafile, jpeg, bmp, png

8、数据操作
缺失值:na.omit
变量标准化:scale
变量转置:t
抽样:sample
堆栈:stack, unstack
其他:aggregate, merge, reshape

9、与数据挖掘软件Weka做接口
RWeka: 通过这个接口,可以在R中使用Weka的所有算法。

时间: 2024-10-25 13:58:32

R语言学习路线图-转帖的相关文章

R语言学习笔记2——绘图

R语言提供了非常强大的图形绘制功能.下面来看一个例子: > dose <- c(20, 30, 40, 45, 60)> drugA <- c(16, 20, 27, 40, 60)> drugB <- c(15, 18, 25, 31, 40) > plot(dose, drugA, type="b") > plot(dose, drugB, type="b") 该例中,我们引入了R语言中第一个绘图函数plot.pl

R语言学习笔记

參考:W.N. Venables, D.M. Smith and the R DCT: Introduction to R -- Notes on R: A Programming Environment for Data Analysis and Graphics,2003. http://bayes.math.montana.edu/Rweb/Rnotes/R.html 前言:关于R 在R的官方教程里是这么给R下注解的:一个数据分析和图形显示的程序设计环境(A system for data

R语言学习(5)-字符串和因子

字符串和因子 1.字符串 创建字符串 > c("HELLO","WORLD") [1] "HELLO" "WORLD" 使用paste函数连接字符串 > paste(c("hello","hi"),"world") [1] "hello world" "hi world" > paste(c("hel

R语言学习中的小bug:R中矩阵相乘错误于A %*% B: 需要数值/复数矩阵/矢量参数

遇到了小bug: R中矩阵相乘错误于A %*% B: 需要数值/复数矩阵/矢量参数 看到网上别人的做法,发现了用class(A)和class(B)之后才发现,是因为读入的时候数据的类型不对,A.B的类型并不是matrix,才导致了这个问题. 用as.matrix来变型一下,就OK了. R语言学习中的小bug:R中矩阵相乘错误于A %*% B: 需要数值/复数矩阵/矢量参数,布布扣,bubuko.com

R语言学习(2)

向量矩阵和数组 1.vector函数可以创建指定类型.长度的矢量 (其结果中的值可以是0,FLASE,空字符串) > vector("numeric",5) [1] 0 0 0 0 0 > vector("complex",6) [1] 0+0i 0+0i 0+0i 0+0i 0+0i 0+0i > vector("logical",6) [1] FALSE FALSE FALSE FALSE FALSE FALSE > 

R语言学习(3)

列表和数据框 1.列表 list函数创建列表 > (a_list <- list(c(1,1,2,5,14,42),month.abb,matrix(c(3,-8,1,-3),nrow=2),asin)) [[1]] [1]  1  1  2  5 14 42 [[2]] [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul&qu

R语言学习(4)-环境和函数

环境和函数 1.环境 使用new.env函数创建环境 > an_environment <- new.env() 向环境中分配变量与列表相同 > an_environment[["pythag"]] <- c(12,15,20,21) > an_environment$root <- polyroot(c(6,-5,1)) > assign("moonday",weekdays(as.Date("1969/07/2

R语言学习(1)

将R作为科学计算器使用 1.例: > 1:5 + 6:10 [1]  7  9 11 13 15 > c(1,3,5,7,9)+c(2,4,6,8,10) [1]  3  7 11 15 19 > median(2:5) [1] 3.5 > 1:10 / 3 [1] 0.3333333 0.6666667 1.0000000 1.3333333 1.6666667 2.0000000 2.3333333 [8] 2.6666667 3.0000000 3.3333333 > 

R语言学习笔记 之 可视化地研究参议员相似性

基于相似性聚类 很多时候,我们想了解一群人中的一个成员与其他成员之间有多么相似.例如,假设我们是一家品牌营销公司,刚刚完成了一份挂怒有潜力新品牌的研究调查问卷.在这份调查问卷中,我们向一群人展示了新品牌的几个特征,并且要求他们对这个新品牌的每个特征按五分制打分.同时也收集了目标人群的社会经济特征,例如:年龄.性别.种族.住址的邮编以及大概的年收入. 通过这份调查问卷,我们想搞清楚品牌如何吸引不同社会经济特征的人群.最重要的是,我们想要知道这个品牌是否有很大的吸引力.换个角度想这个问题,我们想看看