架构
1.1 总体架构
因为Kafka内在就是分布式的,一个Kafka集群通常包括多个代理。
为了均衡负载,将话题分成多个分区,每个代理存储一或多个分区。多个生产者和消费者能够同时生产和获取消息。
一个典型的Kafka请添加链接描述集群中包含若干Producer(可以是web前端产生的Page View,或者是服务器日志,系统CPU、Memory等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干Consumer Group,以及一个Zookeeper集群。
Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息
1.1.1 代理
与其它消息系统不同,Kafka代理是无状态的。这意味着消费者必须维护已消费的状态信息。这些信息由消费者自己维护,代理完全不管。这种设计非常微妙,它本身包含了创新。
从代理删除消息变得很棘手,因为代理并不知道消费者是否已经使用了该消息。Kafka创新性地解决了这个问题,它将一个简单的基于时间的SLA应用于保留策略。当消息在代理中超过一定时间后,将会被自动删除。
这种创新设计有很大的好处,消费者可以故意倒回到老的偏移量再次消费数据。这违反了队列的常见约定,但被证明是许多消费者的基本特征。
1.1.2 Topic & Partition
Topic在逻辑上可以被认为是一个queue,每条消费都必须指定它的Topic,可以简单理解为必须指明把这条消息放进哪个queue里。为了使得Kafka的吞吐率可以线性提高,物理上把Topic分成一个或多个Partition,每个Partition在物理上对应一个文件夹,该文件夹下存储这个Partition的所有消息和索引文件。若创建topic1和topic2两个topic,且分别有13个和19个分区,则整个集群上会相应会生成共32个文件夹(本文所用集群共8个节点,此处topic1和topic2 replication-factor均为1),如下图所示。
每个日志文件都是一个log entrie序列,每个log entrie包含一个4字节整型数值(值为N+5),1个字节的"magic value",4个字节的CRC校验码,其后跟N个字节的消息体。每条消息都有一个当前Partition下唯一的64字节的offset,它指明了这条消息的起始位置。磁盘上存储的消息格式如下:
这个log entries并非由一个文件构成,而是分成多个segment,每个segment以该segment第一条消息的offset命名并以“.kafka”为后缀。另外会有一个索引文件,它标明了每个segment下包含的log entry的offset范围,如下图所示。
因为每条消息都被append到该Partition中,属于顺序写磁盘,因此效率非常高(经验证,顺序写磁盘效率比随机写内存还要高,这是Kafka高吞吐率的一个很重要的保证)。
对于传统的message queue而言,一般会删除已经被消费的消息,而Kafka集群会保留所有的消息,无论其被消费与否。当然,因为磁盘限制,不可能永久保留所有数据(实际上也没必要),因此Kafka提供两种策略删除旧数据。一是基于时间,二是基于Partition文件大小。例如可以通过配置$KAFKA_HOME/config/server.properties,让Kafka删除一周前的数据,也可在Partition文件超过1GB时删除旧数据,配置如下所示。
这里要注意,因为Kafka读取特定消息的时间复杂度为O(1),即与文件大小无关,所以这里删除过期文件与提高Kafka性能无关。选择怎样的删除策略只与磁盘以及具体的需求有关。另外,Kafka会为每一个Consumer Group保留一些metadata信息——当前消费的消息的position,也即offset。这个offset由Consumer控制。正常情况下Consumer会在消费完一条消息后递增该offset。当然,Consumer也可将offset设成一个较小的值,重新消费一些消息。因为offet由Consumer控制,所以Kafka broker是无状态的,它不需要标记哪些消息被哪些消费过,也不需要通过broker去保证同一个Consumer Group只有一个Consumer能消费某一条消息,因此也就不需要锁机制,这也为Kafka的高吞吐率提供了有力保障。
Kafka的存储布局非常简单。话题的每个分区对应一个逻辑日志。
物理上,一个日志为相同大小的一组分段文件。每次生产者发布消息到一个分区,代理就将消息追加到最后一个段文件中。
当发布的消息数量达到设定值或者经过一定的时间后,段文件真正写入磁盘中。写入完成后,消息公开给消费者。
与传统的消息系统不同,Kafka系统中存储的消息没有明确的消息Id。消息通过日志中的逻辑偏移量来公开。这样就避免了维护配套密集寻址,用于映射消息ID到实际消息地址的随机存取索引结构的开销。消息ID是增量的,但不连续。要计算下一消息的ID,可以在其逻辑偏移的基础上加上当前消息的长度。
消费者始终从特定分区顺序地获取消息,如果消费者知道特定消息的偏移量,也就说明消费者已经消费了之前的所有消息。消费者向代理发出异步拉请求,准备字节缓冲区用于消费。每个异步拉请求都包含要消费的消息偏移量。Kafka利用sendfile API高效地从代理的日志段文件中分发字节给消费者。
3.1.1.3 Producer消息路由
Producer发送消息到broker时,会根据Paritition机制选择将其存储到哪一个Partition。
如果Partition机制设置合理,所有消息可以均匀分布到不同的Partition里,这样就实现了负载均衡。
如果一个Topic对应一个文件,那这个文件所在的机器I/O将会成为这个Topic的性能瓶颈,而有了Partition后,不同的消息可以并行写入不同broker的不同Partition里,极大的提高了吞吐率。可以在$KAFKA_HOME/config/server.properties中通过配置项num.partitions来指定新建Topic的默认Partition数量,也可在创建Topic时通过参数指定,同时也可以在Topic创建之后通过Kafka提供的工具修改。
在发送一条消息时,可以指定这条消息的key,Producer根据这个key和Partition机制来判断应该将这条消息发送到哪个Parition。Paritition机制可以通过指定Producer的paritition. class这一参数来指定,该class必须实现kafka.producer.Partitioner接口。本例中如果key可以被解析为整数则将对应的整数与Partition总数取余,该消息会被发送到该数对应的Partition。(每个Parition都会有个序号,序号从0开始)
如果将上例中的类作为partition.class,并通过如下代码发送20条消息(key分别为0,1,2,3)至topic3(包含4个Partition)。
public void sendMessage() throws InterruptedException{
for(int i = 1; i <= 5; i++){
List messageList = new ArrayList<KeyedMessage<String, String>>();
for(int j = 0; j < 4; j++){
messageList.add(new KeyedMessage<String, String>("topic2", j+"", "The " + i + " message for key " + j));
}
producer.send(messageList);
}
producer.close();
}
则key相同的消息会被发送并存储到同一个partition里,而且key的序号正好和Partition序号相同。(Partition序号从0开始,本例中的key也从0开始)。下图所示是通过Java程序调用Consumer后打印出的消息列表。
1.1.4 Consumer Group
(本节所有描述都是基于Consumer hight level API而非low level API)。
使用Consumer high level API时,同一Topic的一条消息只能被同一个Consumer Group内的一个Consumer消费,但多个Consumer Group可同时消费这一消息。
这是Kafka用来实现一个Topic消息的广播(发给所有的Consumer)和单播(发给某一个Consumer)的手段。一个Topic可以对应多个Consumer Group。如果需要实现广播,只要每个Consumer有一个独立的Group就可以了。要实现单播只要所有的Consumer在同一个Group里。用Consumer Group还可以将Consumer进行自由的分组而不需要多次发送消息到不同的Topic。
实际上,Kafka的设计理念之一就是同时提供离线处理和实时处理。根据这一特性,可以使用Storm这种实时流处理系统对消息进行实时在线处理,同时使用Hadoop这种批处理系统进行离线处理,还可以同时将数据实时备份到另一个数据中心,只需要保证这三个操作所使用的Consumer属于不同的Consumer Group即可。下图是Kafka在Linkedin的一种简化部署示意图。
下面这个例子更清晰地展示了Kafka Consumer Group的特性。首先创建一个Topic (名为topic1,包含3个Partition),然后创建一个属于group1的Consumer实例,并创建三个属于group2的Consumer实例,最后通过Producer向topic1发送key分别为1,2,3的消息。结果发现属于group1的Consumer收到了所有的这三条消息,同时group2中的3个Consumer分别收到了key为1,2,3的消息。如下图所示。
1.1.5 Push vs. Pull
作为一个消息系统,Kafka遵循了传统的方式,选择由Producer向broker push消息并由Consumer从broker pull消息。一些logging-centric system,比如Facebook的Scribe和Cloudera的Flume,采用push模式。事实上,push模式和pull模式各有优劣。
push模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。push模式的目标是尽可能以最快速度传递消息,但是这样很容易造成Consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据Consumer的消费能力以适当的速率消费消息。
对于Kafka而言,pull模式更合适。pull模式可简化broker的设计,Consumer可自主控制消费消息的速率,同时Consumer可以自己控制消费方式——即可批量消费也可逐条消费,同时还能选择不同的提交方式从而实现不同的传输语义。
1.1.6 Kafka delivery guarantee
有这么几种可能的delivery guarantee:
1、At most once 消息可能会丢,但绝不会重复传输
2、At least one 消息绝不会丢,但可能会重复传输
3、Exactly once 每条消息肯定会被传输一次且仅传输一次,很多时候这是用户所想要的。
当Producer向broker发送消息时,一旦这条消息被commit,因replication的存在,它就不会丢。但是如果Producer发送数据给broker后,遇到网络问题而造成通信中断,那Producer就无法判断该条消息是否已经commit。虽然Kafka无法确定网络故障期间发生了什
么,但是Producer可以生成一种类似于主键的东西,发生故障时幂等性的重试多次,这样就做到了Exactly once。截止到目前(Kafka 0.8.2版本,2015-03-04),这一Feature还并未实现,有希望在Kafka未来的版本中实现。(所以目前默认情况下一条消息从Producer到broker是确保了At least once,可通过设置Producer异步发送实现At most once)。
接下来讨论的是消息从broker到Consumer的delivery guarantee语义。(仅针对Kafka consumer high level API)。Consumer在从broker读取消息后,可以选择commit,该操作会在Zookeeper中保存该Consumer在该Partition中读取的消息的offset。该Consumer下一次再读该Partition时会从下一条开始读取。如未commit,下一次读取的开始位置会跟上一次commit之后的开始位置相同。当然可以将Consumer设置为autocommit,即Consumer一旦读到数据立即自动commit。如果只讨论这一读取消息的过程,那Kafka是确保了Exactly once。但实际使用中应用程序并非在Consumer读取完数据就结束了,而是要进行进一步处理,而数据处理与commit的顺序在很大程度上决定了消息从broker和consumer的delivery guarantee semantic。
读完消息先commit再处理消息。这种模式下,如果Consumer在commit后还没来得及处理消息就crash了,下次重新开始工作后就无法读到刚刚已提交而未处理的消息,这就对应于At most once
读完消息先处理再commit。这种模式下,如果在处理完消息之后commit之前Consumer crash了,下次重新开始工作时还会处理刚刚未commit的消息,实际上该消息已经被处理过了。这就对应于At least once。在很多使用场景下,消息都有一个主键,所以消息的处理往往具有幂等性,即多次处理这一条消息跟只处理一次是等效的,那就可以认为是Exactly once。(笔者认为这种说法比较牵强,毕竟它不是Kafka本身提供的机制,主键本身也并不能完全保证操作的幂等性。而且实际上我们说delivery guarantee 语义是讨论被处理多少次,而非处理结果怎样,因为处理方式多种多样,我们不应该把处理过程的特性——如是否幂等性,当成Kafka本身的Feature)
如果一定要做到Exactly once,就需要协调offset和实际操作的输出。精典的做法是引入两阶段提交。如果能让offset和操作输入存在同一个地方,会更简洁和通用。这种方式可能更好,因为许多输出系统可能不支持两阶段提交。比如,Consumer拿到数据后可能把数据放到HDFS,如果把最新的offset和数据本身一起写到HDFS,那就可以保证数据的输出和offset的更新要么都完成,要么都不完成,间接实现Exactly once。(目前就high level API而言,offset是存于Zookeeper中的,无法存于HDFS,而low level API的offset是由自己去维护的,可以将之存于HDFS中)
总之,Kafka默认保证At least once,并且允许通过设置Producer异步提交来实现At most once。而Exactly once要求与外部存储系统协作,幸运的是Kafka提供的offset可以非常直接非常容易得使用这种方式。
原文地址:http://blog.51cto.com/13831707/2150054