需求:读取指定目录的数据,并实现单词计数的功能
实现方案:
Spout来读取指定目录的数据,作为后续Bolt处理的input
使用一个Bolt把input 的数据,切割分开,我们按照逗号进分割
使用一个Bolt来进行最终的单词次数统计操作并输出
拓扑设计:DataSourceSpout ==>SpiltBolt ==>CountBolt
Storm编程注意,Topology,Spout,Bolt等命名不能重复,伤到集群需要注意出现重复命名,会报错的。
package com.imooc.bigdata; import org.apache.commons.io.FileUtils; import org.apache.storm.Config; import org.apache.storm.LocalCluster; import org.apache.storm.spout.SpoutOutputCollector; import org.apache.storm.task.OutputCollector; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.TopologyBuilder; import org.apache.storm.topology.base.BaseRichBolt; import org.apache.storm.topology.base.BaseRichSpout; import org.apache.storm.tuple.Fields; import org.apache.storm.tuple.Tuple; import org.apache.storm.tuple.Values; import java.io.File; import java.io.IOException; import java.util.*; /** * 使用Storm完成词频统计功能 */ public class LocalWordCountStormTopology { public static class DataSourceSpout extends BaseRichSpout{ private SpoutOutputCollector collector; @Override public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { this.collector = collector; } /** * 业务逻辑 * 1) 读取指定目录文件夹下的数据:E:\iso\linux * 2) 把每一行的数据发射出去 */ @Override public void nextTuple() { // 获取所有文件 Collection<File> files = FileUtils.listFiles(new File("E:\\iso\\linux"), new String[]{"txt"}, true); for (File file: files){ try { // 获取文件中的所有内容 List<String> lines = FileUtils.readLines(file); // 获取文件中的每行的内容 for (String line: lines){ // 发射出去 this.collector.emit(new Values(line)); } // TODO... 数据处理完成之后,改名,否则一直重复执行 FileUtils.moveFile(file, new File(file.getAbsolutePath()+System.currentTimeMillis())); } catch (IOException e) { e.printStackTrace(); } } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("line")); } } /** * 对数据进行分割 */ public static class SplitBolt extends BaseRichBolt{ private OutputCollector collector; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; } /** * 业务逻辑: * line: 对line进行分割,按逗号进行分割 * @param input */ @Override public void execute(Tuple input) { String line = input.getStringByField("line"); String[] words = line.split(","); for (String word: words){ this.collector.emit(new Values(word)); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word")); } } /** * 词频汇总Bolt */ public static class WordCountBlot extends BaseRichBolt{ @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { } Map<String, Integer> map = new HashMap<String, Integer>(); /** * 业务逻辑: * 1)获取每个单词 * 2)对所有单词进行汇总 * 3)输出 * @param input */ @Override public void execute(Tuple input) { // 1)获取每个单词 String word = input.getStringByField("word"); Integer count = map.get(word); if (count == null){ count = 0; } count ++; // 2)对所有单词进行汇总 map.put(word, count); // 3)输出 System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~"); Set<Map.Entry<String, Integer>> entries = map.entrySet(); for (Map.Entry<String, Integer> entry: entries) { System.out.println(entry); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { } } public static void main(String[] args) { // 通过TopologyBuilder根据Spout和Bilt构建Topology TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("DataSourceSpout", new DataSourceSpout()); builder.setBolt("SplitBolt", new SplitBolt()).shuffleGrouping("DataSourceSpout"); builder.setBolt("WordCountBlot", new WordCountBlot()).shuffleGrouping("SplitBolt"); // 创建本地集群 LocalCluster cluster = new LocalCluster(); cluster.submitTopology("LocalWordCountStormTopology", new Config(), builder.createTopology()); } }
原文地址:https://www.cnblogs.com/RzCong/p/9383141.html
时间: 2024-09-30 03:31:15