ArrayList源码解读(jdk1.8)

概要

上一章,我们学习了Collection的架构。这一章开始,我们对Collection的具体实现类进行讲解;首先,讲解List,而List中ArrayList又最为常用。因此,本章我们讲解ArrayList。先对ArrayList有个整体认识,再学习它的源码,最后再通过例子来学习如何使用它。内容包括:
第1部分 ArrayList简介
第2部分 ArrayList数据结构
第3部分 ArrayList源码解析(基于JDK1.8)
第4部分 ArrayList遍历方式

第1部分 ArrayList介绍

ArrayList简介

ArrayList 是一个数组队列,相当于 动态数组。与Java中的数组相比,它的容量能动态增长。它继承于AbstractList,实现了List, RandomAccess, Cloneable, java.io.Serializable这些接口。

ArrayList 继承了AbstractList,实现了List。它是一个数组队列,提供了相关的添加、删除、修改、遍历等功能。
ArrayList 实现了RandmoAccess接口,即提供了随机访问功能。RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在ArrayList中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问。稍后,我们会比较List的“快速随机访问”和“通过Iterator迭代器访问”的效率。

ArrayList 实现了Cloneable接口,即覆盖了函数clone(),能被克隆。

ArrayList 实现java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。

和Vector不同,ArrayList中的操作不是线程安全的!所以,建议在单线程中才使用ArrayList,而在多线程中可以选择Vector或者CopyOnWriteArrayList。

ArrayList构造函数

    /**
     * 当指明初始化数组的大小时,直接将数组初始化为指定容量的数组。
     */
    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                    initialCapacity);
        }
    }

    /**
     * 当没有指明数组容量时,初始化为空数组。当第一次添加元素时,会扩容为DEFAULT_CAPACITY,也就是容量为10.
     */
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }

第2部分 ArrayList数据结构

ArrayList的继承关系

java.lang.Object
   ?     java.util.AbstractCollection<E>
         ?     java.util.AbstractList<E>
               ?     java.util.ArrayList<E>

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable {}

ArrayList与Collection关系如下图

ArrayList包含了两个重要的对象:elementData 和 size。

(01) elementData 是"Object[]类型的数组",它保存了添加到ArrayList中的元素。实际上,elementData是个动态数组,我们能通过构造函数 ArrayList(int initialCapacity)来执行它的初始容量为initialCapacity;如果通过不含参数的构造函数ArrayList()来创建ArrayList,则elementData会初始化为空数组(上面构造函数源码),当第一次添加元素时,会扩容至默认容量10。

(02) size 则是动态数组的实际大小。

第3部分 ArrayList源码解析(基于JDK1.8)

为了更了解ArrayList的原理,下面对ArrayList源码代码作出分析。ArrayList是通过数组实现的,源码比较容易理解。

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    private static final long serialVersionUID = 8683452581122892189L;

    /**
     * Default initial capacity.
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * Shared empty array instance used for empty instances.
     */
    private static final Object[] EMPTY_ELEMENTDATA = {};

    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /**
     * 数组用来存储元素。当new ArrayList时没有指明大小,那么就会使用默认的空数组。
     * 当第一次add元素的时候,会将数组容量设为默认值DEFAULT_CAPACITY 10.
     */
    transient Object[] elementData; // non-private to simplify nested class access

    /**
     * 数组所包含的元素个数,注意和elementData.length区别开。
     *size<=length
     * @serial
     */
    private int size;

    /**
     * 当指明初始化数组的大小时,直接将数组初始化为指定容量的数组。
     */
    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {
            this.elementData = EMPTY_ELEMENTDATA;
        } else {
            throw new IllegalArgumentException("Illegal Capacity: "+
                    initialCapacity);
        }
    }

    /**
     * 当没有指明数组容量时,初始化为空数组。当第一次添加元素时,会扩容为DEFAULT_CAPACITY,也就是容量为10.
     */
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }

    public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        if ((size = elementData.length) != 0) {
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            if (elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            // replace with empty array.
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }

    /**
     * 将当前数组截成size大小的数组,也就是有元素部分留下,剩下的长度不要了。
     */
    public void trimToSize() {
        modCount++;
        if (size < elementData.length) {
            elementData = (size == 0)
                    ? EMPTY_ELEMENTDATA
                    : Arrays.copyOf(elementData, size);
        }
    }

    /**
     * 调整容量。首先判断,如果有必要,则将容量扩大至至少能放下minCapacity个元素。
     */
    public void ensureCapacity(int minCapacity) {
        /**
         * 这里主要确保:如果数组为空,则至少需要扩容到DEFAULT_CAPACITY。
         * 如果不为空,扩大至至少能放下minCapacity个元素。
         */
        int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
                ? 0
                : DEFAULT_CAPACITY;

        if (minCapacity > minExpand) {
            ensureExplicitCapacity(minCapacity);
        }
    }

    private void ensureCapacityInternal(int minCapacity) {
        /**
         * 如果数组为空,则要扩大至Math.max(DEFAULT_CAPACITY, minCapacity)
         */
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }

        ensureExplicitCapacity(minCapacity);
    }

    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;

        // 当前要求的个数比当前数组的length要大,则扩容。
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

    /**
     * The maximum size of array to allocate.
     * Some VMs reserve some header words in an array.
     * Attempts to allocate larger arrays may result in
     * OutOfMemoryError: Requested array size exceeds VM limit
     */
    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 扩容,保证最少可以存放minCapacity个元素。基本原则是扩容至数组长度的1.5倍
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        //当前数组长度(容量)
        int oldCapacity = elementData.length;
        //新容量是当前数组容量的1.5倍。
        int newCapacity = oldCapacity + (oldCapacity >> 1);
        //如果1.5倍的新容量都比minCapacity小,那么新容量就为minCapacity
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        /**
         * 新容量比最大数组容量还要大的时候,就要重新赋值新容量了。不能超过最大值。
         */
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        // minCapacity is usually close to size, so this is a win:
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
    }

    public int size() {
        return size;
    }

    public boolean isEmpty() {
        return size == 0;
    }

    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }

    /**
     * 找出元素的位置,可以看出ArrayList可以存放null
     */
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

    /**
     * 克隆的时候,数组得单独克隆
     */
    public Object clone() {
        try {
            ArrayList<?> v = (ArrayList<?>) super.clone();
            v.elementData = Arrays.copyOf(elementData, size);
            v.modCount = 0;
            return v;
        } catch (CloneNotSupportedException e) {
            // this shouldn‘t happen, since we are Cloneable
            throw new InternalError(e);
        }
    }

    public Object[] toArray() {
        return Arrays.copyOf(elementData, size);
    }

    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            // Make a new array of a‘s runtime type, but my contents:
            return (T[]) Arrays.copyOf(elementData, size, a.getClass());
        System.arraycopy(elementData, 0, a, 0, size);
        if (a.length > size)
            a[size] = null;
        return a;
    }

    // Positional Access Operations

    @SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

    /**
     * 按索引得到元素只要判断索引没有越界,就直接返回数组对应元素
     */
    public E get(int index) {
        rangeCheck(index);

        return elementData(index);
    }

    /**
     * 将指定位置的元素换成新元素
     */
    public E set(int index, E element) {
        rangeCheck(index);

        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

    /**
     * 添加元素,如果是第一次添加,就会扩容到DEFAULT_CAPACITY大小;
     * 不是第一次添加也会判断是否需要扩容,基本规则是扩容到当前数组容量的1.5倍。
     * modCount会增加
     */
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }

    /**
     *每次添加都要判断是否需要扩容
     * 先将index后的元素后移一个,再插入
     * modCount++
     */
    public void add(int index, E element) {
        rangeCheckForAdd(index);

        ensureCapacityInternal(size + 1);  // Increments modCount!!
        System.arraycopy(elementData, index, elementData, index + 1,
                size - index);
        elementData[index] = element;
        size++;
    }

    /**
     * 删除元素,modCount++
     * 将index后的元素往前移,并将最后一个元素置为Null
     */
    public E remove(int index) {
        rangeCheck(index);

        modCount++;
        E oldValue = elementData(index);

        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                    numMoved);
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }

    /**
     * 删除指定的元素。该元素可以为null。
     */
    public boolean remove(Object o) {
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }

    /*
     * Private remove method that skips bounds checking and does not
     * return the value removed.
     */
    private void fastRemove(int index) {
        modCount++;
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                    numMoved);
        elementData[--size] = null; // clear to let GC do its work
    }

    /**
     * 将所有元素置为Null
     */
    public void clear() {
        modCount++;

        // clear to let GC do its work
        for (int i = 0; i < size; i++)
            elementData[i] = null;

        size = 0;
    }

    /**
     * Appends all of the elements in the specified collection to the end of
     * this list, in the order that they are returned by the
     * specified collection‘s Iterator.  The behavior of this operation is
     * undefined if the specified collection is modified while the operation
     * is in progress.  (This implies that the behavior of this call is
     * undefined if the specified collection is this list, and this
     * list is nonempty.)
     *
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(Collection<? extends E> c) {
        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount
        System.arraycopy(a, 0, elementData, size, numNew);
        size += numNew;
        return numNew != 0;
    }

    /**
     * Inserts all of the elements in the specified collection into this
     * list, starting at the specified position.  Shifts the element
     * currently at that position (if any) and any subsequent elements to
     * the right (increases their indices).  The new elements will appear
     * in the list in the order that they are returned by the
     * specified collection‘s iterator.
     *
     * @param index index at which to insert the first element from the
     *              specified collection
     * @param c collection containing elements to be added to this list
     * @return <tt>true</tt> if this list changed as a result of the call
     * @throws IndexOutOfBoundsException {@inheritDoc}
     * @throws NullPointerException if the specified collection is null
     */
    public boolean addAll(int index, Collection<? extends E> c) {
        rangeCheckForAdd(index);

        Object[] a = c.toArray();
        int numNew = a.length;
        ensureCapacityInternal(size + numNew);  // Increments modCount

        int numMoved = size - index;
        if (numMoved > 0)
            System.arraycopy(elementData, index, elementData, index + numNew,
                    numMoved);

        System.arraycopy(a, 0, elementData, index, numNew);
        size += numNew;
        return numNew != 0;
    }

    /**
     * Removes from this list all of the elements whose index is between
     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
     * Shifts any succeeding elements to the left (reduces their index).
     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
     * (If {@code toIndex==fromIndex}, this operation has no effect.)
     *
     * @throws IndexOutOfBoundsException if {@code fromIndex} or
     *         {@code toIndex} is out of range
     *         ({@code fromIndex < 0 ||
     *          fromIndex >= size() ||
     *          toIndex > size() ||
     *          toIndex < fromIndex})
     */
    protected void removeRange(int fromIndex, int toIndex) {
        modCount++;
        int numMoved = size - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                numMoved);

        // clear to let GC do its work
        int newSize = size - (toIndex-fromIndex);
        for (int i = newSize; i < size; i++) {
            elementData[i] = null;
        }
        size = newSize;
    }

    /**
     * Checks if the given index is in range.  If not, throws an appropriate
     * runtime exception.  This method does *not* check if the index is
     * negative: It is always used immediately prior to an array access,
     * which throws an ArrayIndexOutOfBoundsException if index is negative.
     */
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * A version of rangeCheck used by add and addAll.
     */
    private void rangeCheckForAdd(int index) {
        if (index > size || index < 0)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * Constructs an IndexOutOfBoundsException detail message.
     * Of the many possible refactorings of the error handling code,
     * this "outlining" performs best with both server and client VMs.
     */
    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    /**
     * Removes from this list all of its elements that are contained in the
     * specified collection.
     *
     * @param c collection containing elements to be removed from this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean removeAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, false);
    }

    /**
     * Retains only the elements in this list that are contained in the
     * specified collection.  In other words, removes from this list all
     * of its elements that are not contained in the specified collection.
     *
     * @param c collection containing elements to be retained in this list
     * @return {@code true} if this list changed as a result of the call
     * @throws ClassCastException if the class of an element of this list
     *         is incompatible with the specified collection
     * (<a href="Collection.html#optional-restrictions">optional</a>)
     * @throws NullPointerException if this list contains a null element and the
     *         specified collection does not permit null elements
     * (<a href="Collection.html#optional-restrictions">optional</a>),
     *         or if the specified collection is null
     * @see Collection#contains(Object)
     */
    public boolean retainAll(Collection<?> c) {
        Objects.requireNonNull(c);
        return batchRemove(c, true);
    }

    private boolean batchRemove(Collection<?> c, boolean complement) {
        final Object[] elementData = this.elementData;
        int r = 0, w = 0;
        boolean modified = false;
        try {
            for (; r < size; r++)
                if (c.contains(elementData[r]) == complement)
                    elementData[w++] = elementData[r];
        } finally {
            // Preserve behavioral compatibility with AbstractCollection,
            // even if c.contains() throws.
            if (r != size) {
                System.arraycopy(elementData, r,
                        elementData, w,
                        size - r);
                w += size - r;
            }
            if (w != size) {
                // clear to let GC do its work
                for (int i = w; i < size; i++)
                    elementData[i] = null;
                modCount += size - w;
                size = w;
                modified = true;
            }
        }
        return modified;
    }

    /**
     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
     * is, serialize it).
     *
     * @serialData The length of the array backing the <tt>ArrayList</tt>
     *             instance is emitted (int), followed by all of its elements
     *             (each an <tt>Object</tt>) in the proper order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException{
        // Write out element count, and any hidden stuff
        int expectedModCount = modCount;
        s.defaultWriteObject();

        // Write out size as capacity for behavioural compatibility with clone()
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (int i=0; i<size; i++) {
            s.writeObject(elementData[i]);
        }

        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
    }

    /**
     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
        elementData = EMPTY_ELEMENTDATA;

        // Read in size, and any hidden stuff
        s.defaultReadObject();

        // Read in capacity
        s.readInt(); // ignored

        if (size > 0) {
            // be like clone(), allocate array based upon size not capacity
            ensureCapacityInternal(size);

            Object[] a = elementData;
            // Read in all elements in the proper order.
            for (int i=0; i<size; i++) {
                a[i] = s.readObject();
            }
        }
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence), starting at the specified position in the list.
     * The specified index indicates the first element that would be
     * returned by an initial call to {@link ListIterator#next next}.
     * An initial call to {@link ListIterator#previous previous} would
     * return the element with the specified index minus one.
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    public ListIterator<E> listIterator(int index) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }

    /**
     * Returns a list iterator over the elements in this list (in proper
     * sequence).
     *
     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @see #listIterator(int)
     */
    public ListIterator<E> listIterator() {
        return new ListItr(0);
    }

    /**
     * Returns an iterator over the elements in this list in proper sequence.
     *
     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
     *
     * @return an iterator over the elements in this list in proper sequence
     */
    public Iterator<E> iterator() {
        return new Itr();
    }

    /**
     * 迭代器中有expectedModCount
     */
    private class Itr implements Iterator<E> {
        int cursor;       // 下一个返回元素的下标,默认是0
        int lastRet = -1; // 上一个返回元素的下标。-1表示还没有返回
        int expectedModCount = modCount;

        public boolean hasNext() {
            return cursor != size;
        }

        @SuppressWarnings("unchecked")
        public E next() {
            /**
             * 检查expectedModCount与modCount是否相等,不相等表示已经被修改过,抛出异常
             */
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }

总结
(01) ArrayList 实际上是通过一个数组去保存数据的。当我们构造ArrayList时;若使用默认构造函数,会先分配一个空数组,当第一次添加时,则扩容为默认容量大小10
(02) 当ArrayList容量不足以容纳全部元素时,ArrayList会重新设置容量:newCapacity = oldCapacity + (oldCapacity >> 1)。也就是为原数组容量的1.5倍。(如果超过最大容量,就设为最大容量)

(03) ArrayList的克隆函数,即是将全部元素克隆到一个数组中。
(04) ArrayList实现java.io.Serializable的方式。当写入到输出流时,先写入“容量”,再依次写入“每一个元素”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。

(05)源码中有个modCount变量,每做一次修改,都会增加一个。在迭代器中有expectedModCount变量,变量时会判断这两个变量是否相同。如果不相同,表示在遍历过程中,数组被修改过,抛出异常。fail-fast

第4部分 ArrayList遍历方式

ArrayList支持3种遍历方式

(01) 第一种,通过迭代器遍历。即通过Iterator去遍历。

Integer value = null;
Iterator iter = list.iterator();
while (iter.hasNext()) {
    value = (Integer)iter.next();
}

(02) 第二种,随机访问,通过索引值去遍历。
由于ArrayList实现了RandomAccess接口,它支持通过索引值去随机访问元素。

Integer value = null;
int size = list.size();
for (int i=0; i<size; i++) {
    value = (Integer)list.get(i);
}

(03) 第三种,for循环遍历。如下:

Integer value = null;
for (Integer integ:list) {
    value = integ;
}

下面通过一个实例,比较这3种方式的效率,实例代码(ArrayListRandomAccessTest.java)如下:

 

运行结果

iteratorThroughRandomAccess:3 ms
iteratorThroughIterator:8 ms
iteratorThroughFor2:5 ms

由此可见,遍历ArrayList时,使用随机访问(即,通过索引序号访问)效率最高,而使用迭代器的效率最低!

参考:http://www.cnblogs.com/skywang12345/p/3308556.html,这篇文章是1.6,本文1.8

原文地址:https://www.cnblogs.com/xiaolovewei/p/9063500.html

时间: 2024-10-24 15:37:04

ArrayList源码解读(jdk1.8)的相关文章

ArrayList 源码解读

ArrayList 源码解读     基于JDk 1.7.0_80 public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable ArrayList的底层是使用数组实现的,因为数组的容量是固定的,要实现可变容量List,所以一定存在着容量检测,数组复制等方法. 对象属性 /** * 默认大小 */ pr

Java之ArrayList源码解读(JDK 1.8)

java.util.ArrayList 详细注释了ArrayList的实现,基于JDK 1.8 . 迭代器SubList部分未详细解释,会放到其他源码解读里面.此处重点关注ArrayList本身实现. 没有采用标准的注释,并适当调整了代码的缩进以方便介绍 import java.util.AbstractList; import java.util.Arrays; import java.util.BitSet; import java.util.Collection; import java.

ArrayList源码分析--jdk1.8

ArrayList概述   1. ArrayList是可以动态扩容和动态删除冗余容量的索引序列,基于数组实现的集合.  2. ArrayList支持随机访问.克隆.序列化,元素有序且可以重复.  3. ArrayList初始默认长度10,使用Object[]存储各种数据类型. ArrayList数据结构   数据结构是集合的精华所在,数据结构往往也限制了集合的作用和侧重点,了解各种数据结构是我们分析源码的必经之路.  ArrayList的数据结构如下: ArrayList源码分析 /* * 用数

深入理解JAVA集合系列四:ArrayList源码解读

在开始本章内容之前,这里先简单介绍下List的相关内容. List的简单介绍 有序的collection,用户可以对列表中每个元素的插入位置进行精确的控制.用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素.列表通常允许重复的元素,且允许null元素的存放. ArrayList的简单介绍 JDK中这样定义ArrayList:List接口的大小可变数据的实现. 主要有以下特点: 1.有序 2.线程不安全 3.元素可以重复 4.可以存放null值 顾名思义,取名ArrayLis

小编教ArrayList源码解读

前言1)本文章的JDK版本为JDK1.8,如果你使用的是其他版本,请参考你的Java源码!2)由于作者水平有限,本文只对部分的方法进行了分析.不足之处,希望大家指出,谢谢3)如果你对Java中的数组还没有理解,可以先学习数组及其在JVM中的存储方式,可以参考下面文章Java中数组在内存中的存放原理讲解java对象数组的概述和使用 1.继承关系public class ArrayList<E> extends AbstractList<E> implements List<E&

ArrayList源码解读

在端午节这个节日里,有一个特殊的任务,我带着你一起揭开"ArrayList"的真面目.从成员变量.构造函数.主要方法三部分,对ArrayList有进一步的认识,希望能够帮助你. 一.成员变量 //默认容量 private static final int DEFAULT_CAPACITY = 10; //空数组,当调用无参数构造函数的时候默认给个空数组 private static final Object[] EMPTY_ELEMENTDATA = {}; //真正保存数据的数组 p

ArrayList源码解读(部分)

前言:他山之石,可以攻玉 (1) fastRemove(int i),内部私有方法 private void fastRemove(int index) { //ArrayList内大量使用了此变量,用来验证ArrayList对象结构是否被修改 modCount++; int numMoved = size - index - 1; //index后的元素的个数 if (numMoved > 0) //0<=index<size-1的情况 System.arraycopy(element

LinkedList源码分析--jdk1.8

JDK1.8 ArrayList源码分析--jdk1.8LinkedList源码分析--jdk1.8 LinkedList概述 ??1.LinkedList是用双向链表实现的集合,基于内部类Node<E>实现的集合.??2.LinkedList支持双向链表访问.克隆.序列化,元素有序且可以重复.??3.LinkedList没有初始化大小,也没有扩容机制,通过头结点.尾节点迭代查找. LinkedList数据结构 ??数据结构是集合的精华所在,数据结构往往也限制了集合的作用和侧重点,了解各种数据

HashMap源码分析--jdk1.8

JDK1.8 ArrayList源码分析--jdk1.8LinkedList源码分析--jdk1.8HashMap源码分析--jdk1.8 HashMap概述 ??1. HashMap是可以动态扩容的数组,基于数组.链表.红黑树实现的集合.??2. HashMap支持键值对取值.克隆.序列化,元素无序,key不可重复value可重复,都可为null.??3. HashMap初始默认长度16,超出扩容2倍,填充因子0.75f.??4.HashMap当链表的长度大于8的且数组大小大于64时,链表结构