生成模型与判别模型区别

概念理解

监督学习方法可分为两大类,即生成方法与判别方法,它们所学到的模型称为生成模型与判别模型。

  • 判别模型:判别模型是学得一个分类面(即学得一个模型),该分类面可用来区分不同的数据分别属于哪一类;
  • 生成模型:生成模型是学得各个类别各自的特征(即可看成学得多个模型),可用这些特征数据和要进行分类的数据进行比较,看新数据和学得的模型中哪个最相近,进而确定新数据属于哪一类。

举个例子:若分类目标是对图像中的大象和狗进行分类。判别方法学得一个模型,这个模型可能是判断图中动物鼻子的长度是否大于某一阈值,若大于则判断为大象,否则判断为狗;生成学习则分别构建一个大象的特征模型与狗的特征模型,来了一个新图像后,分别用大象模型与狗模型与其进行比较,若新图像与狗相似度更高则判断为狗,否则判断为大象。

相关数学理论

若已知某分类任务的生成模型,是可以求得该任务的判别模型,反之则不行。这和概率论中的全概率密度函数以及边沿概率密度函数是一致的(即已知全概率密度可求得边沿概率密度,但已知边沿概率密度不能求得全概率密度)。

例如:若现在已知一个二分类问题获得的5个训练数据为:(1,0),(1,0),(2,0),(2,1),(2,1) 
1、全概率分布P(X,Y)如下表所示

X\Y 0 1
1 2/5 0
2 1/5 2/5

注意:根据全概率分布,可以推导出如下边沿概率分布P(Y|X)以及P(X)。

2、边沿概率分布P(Y|X)如下表所示

X\Y 0 1
1 1 0
2 1/3 2/3

注意:根据边沿概率分布,不可以推导出全概率分布。例如,此例中边沿概率分布对应的全概率分布可能如下:

X\Y 0 1
1 4/7 0
2 1/7 2/7

由上述例子可知,生成模型的信息比判别模型信息要更全一些。

两类方法的特点

生成方法通常需要无穷多样本,进而学习一个联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)=P(X,Y)/P(X)来对新输入的数据进行分类。

此类方法之所以成为生成方法,是因为模型表示了给定输入X产生输出Y的生成关系。典型的生成模型有:朴素贝叶斯法、马尔科夫模型、高斯混合模型。这种方法一般建立在统计学和Bayes理论的基础之上。

生成方法的特点:

  • 从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度;
  • 生成方法还原出联合概率分布,而判别方法不能;
  • 生成方法的学习收敛速度更快、即当样本容量增加的时候,学到的模型可以更快地收敛于真实模型;
  • 当存在隐变量时,仍然可以用生成方法学习,此时判别方法不能用

判别方法可以根据有限个样本获得一个判别函数(即判别模型),然后用它来对新数据进行分类。典型的判别模型包括:k近邻法、感知机、决策树、逻辑斯蒂回归模型、最大熵模型、支持向量机、boosting方法和条件随机场等。

判别方法的特点:

  • 判别方法寻找不同类别之间的最优分类面,反映的是异类数据之间的差异;
  • 判别方法利用了训练数据的类别标识信息,直接学习的是条件概率P(Y|X)或者决策函数f(X),直接面对预测,往往学习的准确率更高;
  • 由于直接学习条件概率P(Y|X)或者决策函数f(X),可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题;
  • 缺点是不能反映训练数据本身的特性。

两类方法的应用

根据所获取的数据,两类方法都有各自的用场。例如:我们若只有人的侧面数据,我们当然不知道这个人是否长得帅、美,但我们可做(男、女)、(有耳、无耳)分类。用生成模型来做的话,则表示这个人全部信息都有了,当然能做的分类更多了。

转载自:https://blog.csdn.net/quintind/article/details/77923147

原文地址:https://www.cnblogs.com/xiaoshayu520ly/p/9079435.html

时间: 2024-10-25 22:32:10

生成模型与判别模型区别的相关文章

生成模型和判别模型(转)

引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X).监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach).所学到的模型分别为生成模型(generative model)和判别模型(discriminative model). 决策函数和条件概率分布 决策函数Y=f(X) 决策函数Y=f(X)

生成模型与判别模型

摘要: 1.定义 2.常见算法 3.区别 4.优缺点 内容: 1.定义 1.1 生成模型: 在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下.它给观测值和标注数据序列指定一个联合概率分布(joint probability distribution).在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布.条件概率分布可以由生成模型根据贝叶斯准则形成  (参考自:中文wiki) 1

【机器学习基础】生成模型和判别模型

引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach).所学到的模型分别为生成模型(generative model)和判别模型(discriminative model). 决策函数和条件概率分布 决策函数Y=f(X) 决策函数Y=f(X

生成模型与判别模型(转)

生成模型与判别模型 [email protected] http://blog.csdn.net/zouxy09 一直在看论文的过程中遇到这个问题,折腾了不少时间,然后是下面的一点理解,不知道正确否.若有错误,还望各位前辈不吝指正,以免小弟一错再错.在此谢过. 一.决策函数Y=f(X)或者条件概率分布P(Y|X) 监督学习的任务就是从数据中学习一个模型(也叫分类器),应用这一模型,对给定的输入X预测相应的输出Y.这个模型的一般形式为决策函数Y=f(X)或者条件概率分布P(Y|X).      

生成模型 VS 判别模型 (含义、区别、对应经典算法)

从概率分布的角度考虑,对于一堆样本数据,每个均有特征Xi对应分类标记yi. 生成模型:学习得到联合概率分布P(x,y),即特征x和标记y共同出现的概率,然后求条件概率分布.能够学习到数据生成的机制. 判别模型:学习得到条件概率分布P(y|x),即在特征x出现的情况下标记y出现的概率. 数据要求:生成模型需要的数据量比较大,能够较好地估计概率密度:而判别模型对数据样本量的要求没有那么多. 两者的优缺点如下图,摘自知乎 生成模型:以统计学和Bayes作为理论基础 1.朴素贝叶斯: 通过学习先验概率分

生成模型和判别模型

对于输入x,类别标签Y: 判别模型:由数据直接学习决策面Y=f(x)或条件概率P(Y|x)作为预测模型 生成模型:由数据学习联合概率分布P(x,Y),然后求出条件概率P(Y|x)作为预测模型 模型区别: 判别模型寻找不同类别之间的分离面,反映不同类别之间的差异. 生成模型通过统计反映同类数据的相似度. 模型的优点和缺点: 判别模型主要缺点: 1,不能反映数据本身的特征 判别模型主要优点: 1,模型简单,容易学习. 2,分类性能好,分类边界灵活. 生成模型的主要缺点: 1,模型复杂 生成模型主要优

【转载】先验概率与后验概率,生成模型与判别模型

[注]事情还没有发生,要求这件事情发生的可能性的大小,是先验概率.事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率 Generative Model 与 Discriminative Model [摘要]    - 生成模型(Generative Model) :无穷样本==>概率密度模型 = 产生模型==>预测- 判别模型(Discriminative Model):有限样本==>判别函数 = 预测模型==>预测 [简介] 简单的说,假设o是观察值,

【转载】判别模型、生成模型与朴素贝叶斯方法

判别模型.生成模型与朴素贝叶斯方法 转载时请注明来源:http://www.cnblogs.com/jerrylead 1判别模型与生成模型 上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率.形式化表示为,在参数确定的情况下,求解条件概率.通俗的解释为在给定特征后预测结果出现的概率. 比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率.换一种思路,我们可以根据山羊的特征首先学习出一个山羊

生成模型(Generative)和判别模型(Discriminative)

https://www.cnblogs.com/realkate1/p/5683939.html 生成模型(Generative)和判别模型(Discriminative) 引言 最近看文章<A survey of appearance models in visual object tracking>(XiLi,ACMTIST,2013),在文章的第4节第1段有这样的描述,“Recently,visualobject tracking has been posed as a tracking