luogu P1407 稳定婚姻-tarjan缩点

题目背景

原《工资》重题请做2397

题目描述

我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关。

25岁的姗姗和男友谈恋爱半年就结婚,结婚不到两个月就离婚,是典型的“闪婚闪离”例子,而离婚的导火线是两个人争玩电脑游戏,丈夫一气之下,把电脑炸烂。

有社会工作者就表示,80后求助个案越来越多,有些是与父母过多干预有关。而根据民政部的统计,中国离婚五大城市首位是北京,其次是上海、深圳,广州和厦门,那么到底是什么原因导致我国成为离婚大国呢?有专家分析说,中国经济急速发展,加上女性越来越来越独立,另外,近年来简化离婚手续是其中一大原因。

——以上内容摘自第一视频门户

现代生活给人们施加的压力越来越大,离婚率的不断升高已成为现代社会的一大问题。而其中有许许多多的个案是由婚姻中的“不安定因素”引起的。妻子与丈夫吵架后,心如绞痛,于是寻求前男友的安慰,进而夫妻矛盾激化,最终以离婚收场,类似上述的案例数不胜数。

我们已知n对夫妻的婚姻状况,称第i对夫妻的男方为Bi,女方为Gi。若某男Bi与某女Gj曾经交往过(无论是大学,高中,亦或是幼儿园阶段,i≠j),则当某方与其配偶(即Bi与Gi或Bj与Gj)感情出现问题时,他们有私奔的可能性。不妨设Bi和其配偶Gi感情不和,于是Bi和Gj旧情复燃,进而Bj因被戴绿帽而感到不爽,联系上了他的初恋情人Gk……一串串的离婚事件像多米诺骨牌一般接踵而至。若在Bi和Gi离婚的前提下,这2n个人最终依然能够结合成n对情侣,那么我们称婚姻i为不安全的,否则婚姻i就是安全的。

给定所需信息,你的任务是判断每对婚姻是否安全。

输入输出格式

输入格式:

第一行为一个正整数n,表示夫妻的对数;

以下n行,每行包含两个字符串,表示这n对夫妻的姓名(先女后男),由一个空格隔开;

第n+2行包含一个正整数m,表示曾经相互喜欢过的情侣对数;

以下m行,每行包含两个字符串,表示这m对相互喜欢过的情侣姓名(先女后男),由一个空格隔开。

输出格式:

输出文件共包含n行,第i行为“Safe”(如果婚姻i是安全的)或“Unsafe”(如果婚姻i是不安全的)。

输入输出样例

输入样例#1:

2
Melanie Ashley
Scarlett Charles
1
Scarlett Ashley

输出样例#1:

Safe
Safe

输入样例#2:

2
Melanie Ashley
Scarlett Charles
2
Scarlett Ashley
Melanie Charles

输出样例#2:

Unsafe
Unsafe

说明

对于20%的数据,n≤20;

对于40%的数据,n≤100,m≤400;

对于100%的数据,所有姓名字符串中只包含英文大小写字母,大小写敏感,长度不大于8,保证每对关系只在输入文件中出现一次,输入文件的最后m行不会出现未在之前出现过的姓名,这2n个人的姓名各不相同,1≤n≤4000,0≤m≤20000。

像我这样优秀的男人,又怎么会因稳定婚姻这点小事儿发愁呢。

思路解析:

看起来并不是太难。

题目中人名是字符串,我们当然不能用字符串了,我们以人名出现的顺序来编号。

我们用一个map型的 f数组表示f[ ][ ],表示人名的编号是几,例如:f[“dad”][8], 叫dad的编号是8.

然后就是建边了,在这个男性主宰的世界里,当然要女性向男性建边了(嗯?我说啥了么,我想没有吧),单向边。

接下来的要重点注意了啊

输入的m行时,需要男性向女性建边,因为在上边时并且你需要让这牵连到的人连成环,所以我们是女性向男性建边的(仔细想想)。

搞明白上边就好办了,所点以后,判断每一个强联通分量中有几个点,要是有1个以上的点则表明婚姻有危险(单向边,夫妻之间若没有危险是不会在一个强联通分量中的)

每位夫妻判断一下其所在的环,输出就好啦(注意大小写,我在这挂掉了)

AC代码:

/*....................
作者:Manjusaka
时间:2018/7/10
题目:P1407 [国家集训队]稳定婚姻
......................*/

#include <iostream>
#include <cstdio>
#include <map>
#define N int(8e3+2)
#define M int(4e4+2)
using namespace std;
string f[N];
map <string,int> v;
string a,b;
int n,m,sum;
struct ahah{
    int nxt,to;
}edge[M];
int head[N],tot;
void add(int x,int y)
{
    edge[++tot].nxt=head[x],edge[tot].to=y,head[x]=tot;
}
int dfn[N],low[N],index;
int stark[N],top;
bool in[N];
int belong[N];
int cnt;
void tarjan(int u)
{
    dfn[u]=low[u]=++index;
    in[u]=1;stark[++top]=u;
    for(int i=head[u];i;i=edge[i].nxt)
    {
        int v=edge[i].to;
        if(!dfn[v])
        {
            tarjan(v);
            if(low[v]<low[u])low[u]=low[v];
        }
        else if(in[v]&&low[u]>dfn[v])low[u]=dfn[v];
    }
    if(dfn[u]==low[u])
    {
        int p;
        cnt++;
        do
        {
            p=stark[top--];
            in[p]=0;
            belong[p]=cnt;
        }while(u!=p);
    }
}
int vis[N];
void chack()
{
    for(int i=1;i<=sum;i++)if(!dfn[i])tarjan(i);
    for(int i=1;i<=sum;i++)vis[belong[i]]++;
    for(int i=1;i<=n*2;i+=2)
    {
        if(vis[belong[v[f[i]]]]>1)printf("Unsafe\n");
        else printf("Safe\n");
    }
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        cin>>a>>b;
        f[++sum]=a,v[a]=sum;
        f[++sum]=b,v[b]=sum;
        add(sum-1,sum);
    }
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        cin>>a>>b;
        add(v[b],v[a]);
    }
    chack();
}

原文地址:https://www.cnblogs.com/rmy020718/p/9291866.html

时间: 2024-11-09 19:12:11

luogu P1407 稳定婚姻-tarjan缩点的相关文章

51Nod2903 稳定婚姻(Tarjan)

Problem 我们已知n对夫妻的婚姻状况,称第i对夫妻的男方为Bi,女方为Gi.若某男Bi与某女Gj曾经交往过(无论是大学,高中,亦或是幼儿园阶段,i≠j),则当某方与其配偶(即Bi与Gi或Bj与Gj)感情出现问题时,他们有私奔的可能性.不妨设Bi和其配偶Gi感情不和,于是Bi和Gj旧情复燃,进而Bj因被戴绿帽而感到不爽,联系上了他的初恋情人Gk--一串串的离婚事件像多米诺骨牌一般接踵而至.若在Bi和Gi离婚的前提下,这2n个人最终依然能够结合成n对情侣,那么我们称婚姻i为不安全的,否则婚姻i

【题解】P1407国家集训队稳定婚姻

[题解][P1407 国家集训队]稳定婚姻 很好的一道建模+图论题. 婚姻关系?很像二分图匹配呀,不过不管怎么办先建模再说.婚姻关系显然用图方面的知识解决.建图! 它给定的是字符串,所以我们使用\(ac\)自动机\(map\)作匹配建点. 题意就是给你\(n\)对夫妻关系和\(m\)对情人关系,已知情人关系都可以结婚,现在假设对于某个婚姻,如果离婚,这\(2n\)个人最终依然能够结合成\(n\)对情侣,那么这样的婚姻是不稳定的.现在问每个婚姻关系的稳定性. 考虑什么样的婚姻关系是不稳定的.题目给

【bzoj2140】: 稳定婚姻 图论-tarjan

[bzoj2140]: 稳定婚姻 哎..都是模板题.. 一眼看过去 哇 二分图哎 然后发现好像并不能匈牙利算法 自己xjb画两张图,发现二分图左向右连配偶的边,然后右向左连交往过的边 然后如果Bi Gi在同一个强连通分量里面就一定可以在Bi Gi离婚以后再增广一次 最开始用map维护一下名字就好了 1 /* http://www.cnblogs.com/karl07/ */ 2 #include <cstdlib> 3 #include <cstdio> 4 #include &l

BZOJ2140: 稳定婚姻

题解: 题意就是求二分图的必须边. 我们有结论: 在残量网络上跑tarjan,对于一条边(u,v) 如果该边满流||scc[u]==scc[v],那么该边是可行边. 因为如果scc[u]==scc[v],那么说明v到u有通路,我们把v-u的路以及u-v这条边全部反色,也就是匹配->非匹配,非匹配->匹配.同样还是最大匹配.这说明该边是可行的. 如果该边满流&&scc[u]!=scc[v],那么该边是必须边. 因为如果去掉这条边,最大匹配会减少1(想想看),所以该边必须出现在最大

P2835 刻录光盘 (tarjan缩点)

[题目描述] 现在假设总共有N个营员(2<=N<=200),每个营员的编号为1~N.LHC给每个人发了一张调查表,让每个营员填上自己愿意让哪些人到他那儿拷贝资料.当然,如果A愿意把资料拷贝给B,而B又愿意把资料拷贝给C,则一旦A获得了资料,则B,C都会获得资料.求最小需要刻录多少张光盘. [题目链接] https://www.luogu.org/problemnew/show/P2835 [算法] tarjan缩点再求度数为1的点的个数.缩点后,每个强连通分量视作一个点,分量内的边不考虑,其余

[Bzoj 2427] [HAOI2010] 软件安装 tarjan缩点+树形DP

题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一 些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j).幸运的 是,一个软件最多依赖另外一个软件.如果一个软件不能正常工作,那么它能够发挥的作用为0. 我们现在知道了软件之间的依赖关系:软件i依赖软件Di.现在请你设计出

tarjan缩点与割点

Tarjan算法 先是废话时间:说来挺惭愧 , 好几个月以前就学过tarjan算法然而现在才第一次写 模板题:[luogu P3387][模板]缩点 tarjan缩点&dp 为啥要缩点答案显然 把环缩成一个点 然后图上拓扑dp tarjan同名算法有很多 , 比如本blog的缩点与割点的tarjan算法其实并不是一个东西 , 但是很是相似 这个tarjan , 需要三个东西 第一:一个栈来存放搜到的点 第二:一个时间戳dfn , 表示第几个搜到这个点的 第三:low数组 , 表示够追溯到的最早的

【BZOJ-1924】所驼门王的宝藏 Tarjan缩点(+拓扑排序) + 拓扑图DP

1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 787  Solved: 318[Submit][Status][Discuss] Description Input 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室,类型为 Ti.Ti是一个1~3间的整数, 1表示可以传送到第 xi行任意

【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit][Status][Discuss] Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路,需要代价ci.现在B国想找出一个路径切断方案