梯度消失梯度爆炸

https://blog.csdn.net/cppjava_/article/details/68941436

2.解决梯度爆炸问题的方法

通常会使用一种叫”clip gradients “的方法. 它能有效地权重控制在一定范围之内. 
算法步骤如下。

    • 首先设置一个梯度阈值:clip_gradient
    • 在后向传播中求出各参数的梯度,这里我们不直接使用梯度进去参数更新,我们求这些梯度的l2范数
    • 然后比较梯度的l2范数||g||与clip_gradient的大小
    • 如果前者大,求缩放因子clip_gradient/||g||, 由缩放因子可以看出梯度越大,则缩放因子越小,这样便很好地控制了梯度的范围
    • 最后将梯度乘上缩放因子便得到最后所需的梯度
    • https://blog.csdn.net/u010814042/article/details/76154391

原文地址:https://www.cnblogs.com/ymjyqsx/p/9527532.html

时间: 2024-11-06 09:45:02

梯度消失梯度爆炸的相关文章

[ DLPytorch ] 循环神经网络进阶&拟合问题&梯度消失与爆炸

循环神经网络进阶 BPTT 反向传播过程中,训练模型通常需要模型参数的梯度. \[ \frac{\partial L}{\partial \boldsymbol{W}_{qh}} = \sum_{t=1}^T \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{o}_t}, \frac{\partial \boldsymbol{o}_t}{\partial \boldsymbol{W}_{qh}}\right) = \sum_{t=1}

RNN中的梯度消失爆炸原因

RNN中的梯度消失/爆炸原因 梯度消失/梯度爆炸是深度学习中老生常谈的话题,这篇博客主要是对RNN中的梯度消失/梯度爆炸原因进行公式层面上的直观理解. 首先,上图是RNN的网络结构图,\((x_1, x_2, x_3, -, )\)是输入的序列,\(X_t\)表示时间步为\(t\)时的输入向量.假设我们总共有\(k\)个时间步,用第\(k\)个时间步的输出\(H_k\)作为输出(实际上每个时间步都有输出,这里仅考虑\(H_k\)),用\(E_k\)表示损失. 其中,\(C_{t}=\tanh \

DL4NLP——神经网络(二)循环神经网络:BPTT算法步骤整理;梯度消失与梯度爆炸

网上有很多Simple RNN的BPTT算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再这样表示了,因为下标需要用做表示时刻. 典型的Simple RNN结构如下: 图片来源:[3] 约定一下记号: 输入序列 $\textbf x_{(1:T)} =(\textbf x_1,\textbf x_2,...,\textbf x_T)$,每个时刻的值都是一个维数是词表大小的one-hot列向量: 标记序列 $\textbf y_{(1:T)} =(\textbf

对于梯度消失和梯度爆炸的理解

一.梯度消失.梯度爆炸产生的原因 假设存在一个网络结构如图: 其表达式为: 若要对于w1求梯度,根据链式求导法则,得到的解为: 通常,若使用的激活函数为sigmoid函数,其导数: 这样可以看到,如果我们使用标准化初始w,那么各个层次的相乘都是0-1之间的小数,而激活函数f的导数也是0-1之间的数,其连乘后,结果会变的很小,导致梯度消失.若我们初始化的w是很大的数,w大到乘以激活函数的导数都大于1,那么连乘后,可能会导致求导的结果很大,形成梯度爆炸. 当然,若对于b求偏导的话,其实也是一个道理:

梯度消失与梯度爆炸

https://blog.csdn.net/qq_25737169/article/details/78847691 产生消失的梯度问题的原因 先看一个极简单的深度神经网络:每一层都只有一个单一的神经元.如下图: 代价函数C对偏置b1的偏导数的结果计算如下: 先看一下sigmoid 函数导数的图像: 该导数在σ′(0) = 1/4时达到最高.现在,如果我们使用标准方法来初始化网络中的权重,那么会使用一个均值为0 标准差为1 的高斯分布.因此所有的权重通常会满足|wj|<1.从而有wjσ′(zj)

梯度消失(vanishing gradient)和梯度爆炸(exploding gradient)

转自https://blog.csdn.net/guoyunfei20/article/details/78283043 神经网络中梯度不稳定的根本原因:在于前层上的梯度的计算来自于后层上梯度的乘积(链式法则).当层数很多时,就容易出现不稳定.下边3个隐含层为例: 其b1的梯度为: 加入激活函数为sigmoid,则其导数如下图: sigmoid导数σ'的最大值为1/4.同常一个权值w的取值范围为abs(w) < 1,则:|wjσ'(zj)| < 1/4,从而有: 从上式可以得出结论:前层比后层

【深度学习系列】DNN中梯度消失和梯度爆炸的原因推导

DNN中梯度消失和梯度爆炸的原因推导 因为手推涉及很多公式,所以这一截图放出. 原文地址:https://www.cnblogs.com/Elaine-DWL/p/11140917.html

深度学习面试题08:梯度消失与梯度爆炸

目录 梯度消失 梯度爆炸 参考资料 以下图的全连接神经网络为例,来演示梯度爆炸和梯度消失: 梯度消失 在模型参数w都是(-1,1)之间的数的前提下,如果激活函数选择的是sigmod(x),那么他的导函数σ’(x)的值域为(0,0.25],即如下三项的范围都是(0,0.25] 那么w1的导数会有很多(0,0.25]范围的数累乘,就会造成w1的导数很小,这就是梯度消失.梯度消失的后果就是,w1的更新就会很慢,使得神经网络的学习变得很慢. 解决方法:使用relu(x)这样的激活函数,因为他的导函数的值

【神经网络和深度学习】笔记 - 第五章 深度神经网络学习过程中的梯度消失问题

之前的章节,我们利用一个仅包含一层隐藏层的简单神经网络就在MNIST识别问题上获得了98%左右的准确率.我们于是本能会想到用更多的隐藏层,构建更复杂的神经网络将会为我们带来更好的结果. 就如同在进行图像模式识别的时候,第一层的神经层可以学到边缘特征,第二层的可以学到更复杂的图形特征,例如三角形,长方形等,第三层又会识别更加复杂的图案.这样看来,多层的结构就会带来更强大的模型,进行更复杂的识别. 那么在这一章,就试着训练这样的神经网络来看看对结果有没有什么提升.不过我们发现,训练的过程将会出现问题