01背包问题和完全背包问题

在hihocoder上面的题目中看到的这个问题,总结一下。先看01背包问题。

01背包问题:一个背包总容量为V,现在有N个物品,第i个 物品体积为weight[i],价值为value[i],现在往背包里面装东西,怎么装能使背包的内物品价值最大?

看到这个问题,可能会想到贪心算法,但是贪心其实是不对的。例如最少硬币找零问题,要用动态规划。动态规划思想就是解决子问题并记录子问题的解,这样就不用重复解决子问题了。

动态规划先找出子问题,我们可以这样考虑:在物品比较少,背包容量比较小时怎么解决?用一个数组f[i][j]表示,在只有i个物品,容量为j的情况下背包问题的最优解,那么当物品种类变大为i+1时,最优解是什么?第i+1个物品可以选择放进背包或者不放进背包(这也就是0和1),假设放进背包(前提是放得下),那么f[i+1][j]=f[i][j-weight[i+1]+value[i+1];如果不放进背包,那么f[i+1][j]=f[i][j]。

这就得出了状态转移方程:

f[i+1][j]=max(f[i][j],f[i][j-weight[i+1]+value[i+1])。

可以写出代码测试:

#include<iostream>
using namespace std;
#define  V 1500
unsigned int f[10][V];//全局变量,自动初始化为0
unsigned int weight[10];
unsigned int value[10];
#define  max(x,y)	(x)>(y)?(x):(y)
int main()
{

	int N,M;
	cin>>N;//物品个数
	cin>>M;//背包容量
	for (int i=1;i<=N; i++)
	{
		cin>>weight[i]>>value[i];
	}
	for (int i=1; i<=N; i++)
		for (int j=1; j<=M; j++)
		{
			if (weight[i]<=j)
			{
				f[i][j]=max(f[i-1][j],f[i-1][j-weight[i]]+value[i]);
			}
			else
				f[i][j]=f[i-1][j];
		}

	cout<<f[N][M]<<endl;//输出最优解

}

在hihocoder上面还讲到可以进一步优化内存使用。上面计算f[i][j]可以看出,在计算f[i][j]时只使用了f[i-1][0……j],没有使用其他子问题,因此在存储子问题的解时,只存储f[i-1]子问题的解即可。这样可以用两个一维数组解决,一个存储子问题,一个存储正在解决的子问题。

再进一步思考,计算f[i][j]时只使用了f[i-1][0……j],没有使用f[i-1][j+1]这样的话,我们先计算j的循环时,让j=M……1,只使用一个一维数组即可。

for i=1……N

for j=M……1

f[j]=max(f[j],f[j-weight[i]+value[i])

#include<iostream>
using namespace std;
#define  V 1500
unsigned int f[V];//全局变量,自动初始化为0
unsigned int weight[10];
unsigned int value[10];
#define  max(x,y)	(x)>(y)?(x):(y)
int main()
{

	int N,M;
	cin>>N;//物品个数
	cin>>M;//背包容量
	for (int i=1;i<=N; i++)
	{
		cin>>weight[i]>>value[i];
	}
	for (int i=1; i<=N; i++)
		for (int j=M; j>=1; j--)
		{
			if (weight[i]<=j)
			{
				f[j]=max(f[j],f[j-weight[i]]+value[i]);
			}
		}

	cout<<f[M]<<endl;//输出最优解

}

在看完01背包问题,再来看完全背包问题:一个背包总容量为V,现在有N个物品,第i个 物品体积为weight[i],价值为value[i],每个物品都有无限多件,现在往背包里面装东西,怎么装能使背包的内物品价值最大?

对比一下,看到的区别是,完全背包问题中,物品有无限多件。往背包里面添加物品时,只要当前背包没装满,可以一直添加。那么状态转移方程为:

f[i+1][j]=max(f[i][j-k*weight[i+1]+k*value[i+1]),其中0<=k<=V/weight[i+1]

使用内存为一维数组,伪代码

for i=1……N

for j=1……M

f[j]=max(f[j],f[j-weight[i]+value[i])

和01背包问题唯一不同的是j是从1到M。01背包问题是在前一个子问题(i-1种物品)的基础上来解决当前问题(i种物品),向i-1种物品时的背包添加第i种物品;而完全背包问题是在解决当前问题(i种物品),向i种物品时的背包添加第i种物品。

代码如下:

#include<iostream>
using namespace std;
#define  V 1500
unsigned int f[V];//全局变量,自动初始化为0
unsigned int weight[10];
unsigned int value[10];
#define  max(x,y)	(x)>(y)?(x):(y)
int main()
{

	int N,M;
	cin>>N;//物品个数
	cin>>M;//背包容量
	for (int i=1;i<=N; i++)
	{
		cin>>weight[i]>>value[i];
	}
	for (int i=1; i<=N; i++)
		for (int j=1; j<=M; j++)
		{
			if (weight[i]<=j)
			{
				f[j]=max(f[j],f[j-weight[i]]+value[i]);
			}
		}

	cout<<f[M]<<endl;//输出最优解

}
时间: 2024-08-08 22:25:57

01背包问题和完全背包问题的相关文章

0-1背包问题与分数背包问题

0-1背包问题与分数背包问题 问题描述 问题分析之分数背包 代码设计之分数背包问题 问题分析之0-1背包问题 代码设计之0-1背包问题 动态规划算法之间的差别 0-1背包问题与分数背包问题 我们在文章<贪心算法原理>:http://blog.csdn.net/ii1245712564/article/details/45369491中提到过动态规划和贪心算法的区别.以及两个经典的例子:0-1背包问题和分数背包问题,我么知道0-1背包问题是不能够使用贪心算法求解的,而贪心算法则是分数背包问题的不

动态规划 -- 01背包问题和完全背包问题

动态规划的01背包问题和完全背包问题模板 01背包问题模板: // 01背包问题 #include <stdio.h> #include <algorithm> using namespace std; const int maxn = 100; // 物品的最大件数 const int maxv = 1000; // V的上限 int w[maxn], c[maxn], dp[maxv]; int main() { // 边界 for (int v = 0; v <= V;

ACM:动态规划,物品无限的背包问题(完全背包问题)

题目:有n种物品,每种物品都有无限件可用.第i种物品的体积是vi,重量是wi.选一些物品装到一个容量为C的背包中,使得背包内物品在总体积不超过C的前提下重量尽量大. 分析,完全背包问题,相对于上上篇文章的硬币问题,只是由DAG上的无权图变成了这里的DAG上的带权图! 输出最后满足体积不超过背包容量的条件下,背包中的最大重量. 代码: #include <iostream> #include <string> using namespace std; const int MAXN =

【算法导论】0-1背包问题

一.0-1背包问题描述: 已知:小偷在店里偷东西,小偷只带了一个最大承重为W的背包,商店里有N件商品,第i件商品的重量是weight[i],价钱是value[i]. 限制:每种商品只有一件,可以选择拿或者不拿,不能分割,不能只拿一件商品的一部分(所以叫做0-1,0即不拿,1则整个拿走,且一种商品有且只有一件可供拿走) 问题:在不超过背包最大承重的情况下,最多能拿走多少钱的商品. 算导上与0-1背包问题对应的是分数背包问题,分数背包问题中的物品是可以取一部分的,就是说可以拆分的,不像0-1背包中,

背包问题(01背包,完全背包,多重背包)

转自:http://www.cnblogs.com/daoluanxiaozi/archive/2012/05/06/2486105.html 背包问题,经典有背包九讲. 01背包 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票(记住,只有一张钞票),为了防止自己在战斗中频繁的死掉,他决定给自己买一些道具,于是他来到了地精商店前. 死亡骑士:"我要买道具!" 地精商人:"我们这里有三种道具,血瓶150块一个,魔法药200块一个,无敌药水350块一个." 死亡骑士

java实现背包算法(0-1背包问题)

0-1背包的问题 背包问题(Knapsack problem)是一种组合优化的NP完全问题.问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高.问题的名称来源于如何选择最合适的物品放置于给定背包中. 这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放. 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值.则其状态转移方程便是: f[i][v]=max{ f[i-1][v], f

动态规划法-01背包问题

一 几个概念: 最优化问题:有n个输入,它的解由这n个输入的一个子集组成,这个子集必须满足某些事先给定的条件,这些条件称为约束条件,满足约束条件的解称为问题的可行解.满足约束条件的可行解可能不止一个,为了衡量这些可行解的优劣,事先给出一定的标准,这些标准通常以函数的形式给出,这些标准函数称为目标函数,使目标函数取得极值的可行解成为最优解,这类问题称为最优化问题. 二 最优性原理: 对于一个具有n个输入的最优化问题,其求解的过程往往可以划分为若干个阶段,每一个阶段的决策仅依赖前一阶段的状态,由决策

动态规划经典题解--背包问题

1.完全背包--背包不允许剩余 #include <iostream> #include <string.h> #define N 50002 #define M 2002 using namespace std; //测试OJ:nyoj 311 /* 背包不允许剩余,与允许剩余相比,只需将d[i]初始为负无穷大,d[0]=0 d[i]: 用去i容量时的最大价值 */ int d[N]; struct Node { int pri; int vol; }c[M]; int main

动态规划-多重背包问题

0-1背包问题 完全背包问题 多重背包问题是0-1背包问题和完全背包问题的综合体,可以描述如下:从n种物品向容积为V的背包装入,其中每种物品的体积为w,价值为v,数量为k,问装入的最大价值总和? 我们知道0-1背包问题是背包问题的基础,所以在解决多重背包问题的时候,要将多重背包向0-1背包上进行转换.在多重背包问题中,每种物品有k个,可以将每种物品看作k种,这样就可以使用0-1背包的算法.但是,这样会增加数据的规模.因为该算法的时间复杂度为O(V*∑ni=1ki),所以要降低每种物品的数量ki.