Matlab/Octave toolbox for deep learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, Convolutional Autoencoders and vanilla Neural Nets. Each method has examples to get you started.
rasmusbergpalm authored on May 11
Failed to load latest commit information. | |||
CAE | merged upstream/master | a year ago | |
CNN | fixed a small bug for Matlab calling undefined OCTAVE_VERSION for con… | 11 months ago | |
DBN | fix assertion | a year ago | |
NN | Merge pull request #93 from golden1232004/master | 7 months ago | |
SAE | fixes #21. Thanks @skaae | 2 years ago | |
data | Few changes to make CNNs work on Octave. | a year ago | |
tests | Update test_example_CNN.m | a year ago | |
util | fixed a small bug for Matlab calling undefined OCTAVE_VERSION for con… | 11 months ago | |
.travis.yml | Minor changes to CI script | a year ago | |
CONTRIBUTING.md | merged upstream/master | a year ago | |
LICENSE | added license. fixes #10. thanks | 2 years ago | |
README.md | Add a Bitdeli badge to README | a year ago | |
README_header.md | Update README_header.md | a year ago | |
REFS.md | Added links to REF.md references. | 3 years ago | |
create_readme.sh | updated readme | 2 years ago |
README.md
DeepLearnToolbox
A Matlab toolbox for Deep Learning.
Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain‘s apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is Learning Deep Architectures for AI
For a more informal introduction, see the following videos by Geoffrey Hinton and Andrew Ng.
- The Next Generation of Neural Networks (Hinton, 2007)
- Recent Developments in Deep Learning (Hinton, 2010)
- Unsupervised Feature Learning and Deep Learning (Ng, 2011)
If you use this toolbox in your research please cite Prediction as a candidate for learning deep hierarchical models of data
@MASTERSTHESIS\{IMM2012-06284,
author = "R. B. Palm",
title = "Prediction as a candidate for learning deep hierarchical models of data",
year = "2012",
}
Contact: rasmusbergpalm at gmail dot com
Directories included in the toolbox
NN/
- A library for Feedforward Backpropagation Neural Networks
CNN/
- A library for Convolutional Neural Networks
DBN/
- A library for Deep Belief Networks
SAE/
- A library for Stacked Auto-Encoders
CAE/
- A library for Convolutional Auto-Encoders
util/
- Utility functions used by the libraries
data/
- Data used by the examples
tests/
- unit tests to verify toolbox is working
For references on each library check REFS.md
Setup
- Download.
- addpath(genpath(‘DeepLearnToolbox‘));
Known errors
test_cnn_gradients_are_numerically_correct
fails on Octave because of a bug in Octave‘s convn implementation. See http://savannah.gnu.org/bugs/?39314
test_example_CNN
fails in Octave for the same reason.
Example: Deep Belief Network
function test_example_DBN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit RBM and visualize its weights rand(‘state‘,0) dbn.sizes = [100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); figure; visualize(dbn.rbm{1}.W‘); % Visualize the RBM weights %% ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN rand(‘state‘,0) %train dbn dbn.sizes = [100 100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn = dbnsetup(dbn, train_x, opts); dbn = dbntrain(dbn, train_x, opts); %unfold dbn to nn nn = dbnunfoldtonn(dbn, 10); nn.activation_function = ‘sigm‘; %train nn opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.10, ‘Too big error‘);
Example: Stacked Auto-Encoders
function test_example_SAE load mnist_uint8; train_x = double(train_x)/255; test_x = double(test_x)/255; train_y = double(train_y); test_y = double(test_y); %% ex1 train a 100 hidden unit SDAE and use it to initialize a FFNN % Setup and train a stacked denoising autoencoder (SDAE) rand(‘state‘,0) sae = saesetup([784 100]); sae.ae{1}.activation_function = ‘sigm‘; sae.ae{1}.learningRate = 1; sae.ae{1}.inputZeroMaskedFraction = 0.5; opts.numepochs = 1; opts.batchsize = 100; sae = saetrain(sae, train_x, opts); visualize(sae.ae{1}.W{1}(:,2:end)‘) % Use the SDAE to initialize a FFNN nn = nnsetup([784 100 10]); nn.activation_function = ‘sigm‘; nn.learningRate = 1; nn.W{1} = sae.ae{1}.W{1}; % Train the FFNN opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.16, ‘Too big error‘);
Example: Convolutional Neural Nets
function test_example_CNN load mnist_uint8; train_x = double(reshape(train_x‘,28,28,60000))/255; test_x = double(reshape(test_x‘,28,28,10000))/255; train_y = double(train_y‘); test_y = double(test_y‘); %% ex1 Train a 6c-2s-12c-2s Convolutional neural network %will run 1 epoch in about 200 second and get around 11% error. %With 100 epochs you‘ll get around 1.2% error rand(‘state‘,0) cnn.layers = { struct(‘type‘, ‘i‘) %input layer struct(‘type‘, ‘c‘, ‘outputmaps‘, 6, ‘kernelsize‘, 5) %convolution layer struct(‘type‘, ‘s‘, ‘scale‘, 2) %sub sampling layer struct(‘type‘, ‘c‘, ‘outputmaps‘, 12, ‘kernelsize‘, 5) %convolution layer struct(‘type‘, ‘s‘, ‘scale‘, 2) %subsampling layer }; cnn = cnnsetup(cnn, train_x, train_y); opts.alpha = 1; opts.batchsize = 50; opts.numepochs = 1; cnn = cnntrain(cnn, train_x, train_y, opts); [er, bad] = cnntest(cnn, test_x, test_y); %plot mean squared error figure; plot(cnn.rL); assert(er<0.12, ‘Too big error‘);
Example: Neural Networks
function test_example_NN load mnist_uint8; train_x = double(train_x) / 255; test_x = double(test_x) / 255; train_y = double(train_y); test_y = double(test_y); % normalize [train_x, mu, sigma] = zscore(train_x); test_x = normalize(test_x, mu, sigma); %% ex1 vanilla neural net rand(‘state‘,0) nn = nnsetup([784 100 10]); opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples [nn, L] = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.08, ‘Too big error‘); %% ex2 neural net with L2 weight decay rand(‘state‘,0) nn = nnsetup([784 100 10]); nn.weightPenaltyL2 = 1e-4; % L2 weight decay opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, ‘Too big error‘); %% ex3 neural net with dropout rand(‘state‘,0) nn = nnsetup([784 100 10]); nn.dropoutFraction = 0.5; % Dropout fraction opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, ‘Too big error‘); %% ex4 neural net with sigmoid activation function rand(‘state‘,0) nn = nnsetup([784 100 10]); nn.activation_function = ‘sigm‘; % Sigmoid activation function nn.learningRate = 1; % Sigm require a lower learning rate opts.numepochs = 1; % Number of full sweeps through data opts.batchsize = 100; % Take a mean gradient step over this many samples nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, ‘Too big error‘); %% ex5 plotting functionality rand(‘state‘,0) nn = nnsetup([784 20 10]); opts.numepochs = 5; % Number of full sweeps through data nn.output = ‘softmax‘; % use softmax output opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, ‘Too big error‘); %% ex6 neural net with sigmoid activation and plotting of validation and training error % split training data into training and validation data vx = train_x(1:10000,:); tx = train_x(10001:end,:); vy = train_y(1:10000,:); ty = train_y(10001:end,:); rand(‘state‘,0) nn = nnsetup([784 20 10]); nn.output = ‘softmax‘; % use softmax output opts.numepochs = 5; % Number of full sweeps through data opts.batchsize = 1000; % Take a mean gradient step over this many samples opts.plot = 1; % enable plotting nn = nntrain(nn, tx, ty, opts, vx, vy); % nntrain takes validation set as last two arguments (optionally) [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.1, ‘Too big error‘);