[LeetCode]-algorithms-Longest Palindromic Substring

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000,

and there exists one unique longest palindromic substring.

要求:给定一个字符串,求最长的回文字符串

"a"
=>a
"runcodes"
=>r
"runcodestatus"
=>tat
"runcodestats"
=>stats

public String longestPalindrome(String s) {
        s = s.trim();
        if(null==s || "".equals(s))
            return null;
        String res = s.substring(0,1);
        String temp;
        for(int i=0; i<s.length()-1; i++){
            temp = search(s, i, i);
            if(temp.length()>res.length())
                res = temp;
            temp = search(s, i, i+1);
            if(temp.length()>res.length())
                res = temp;
        }
        return res;
    }
    //这个方法向 i 的两端发散
    public String search(String s,int begin,int end){
        while(begin>=0 && end<s.length() && (s.charAt(begin)==s.charAt(end))){
            begin--;
            end++;
        }
        return s.substring((begin+1),end);
    }

分析:以每个字符为中心,遍历前后的字符串

时间: 2024-10-22 02:52:33

[LeetCode]-algorithms-Longest Palindromic Substring的相关文章

LeetCode #5 Longest Palindromic Substring (M)

[Problem] Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. [Analysis] 这题的思路有很多种,网上也有各种讨论.这里我采用的是个人觉得比较好理解的一种利用Dynamic Progra

LeetCode(4) || Longest Palindromic Substring 与 Manacher 线性算法

LeetCode(4) || Longest Palindromic Substring 与 Manacher 线性算法 题记 本文是LeetCode题库的第五题,没想到做这些题的速度会这么慢,工作之余全部耗在这上面了,只怪自己基础差.本文主要介绍使用Manacher线性算法来求解字符串的最长回文子字符串. 题目 Given a string S, find the longest palindromic substring in S. You may assume that the maxim

LeetCode:Longest Palindromic Substring

Longest Palindromic Substring Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 动态规划解法 T(n) = O(n^2)  ,S(n) = O(n^2); Solutio

LeetCode 5 Longest Palindromic Substring(最长子序列)

题目来源:https://leetcode.com/problems/longest-palindromic-substring/ Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 动态规划,类似于l

[LeetCode][JavaScript]Longest Palindromic Substring

Longest Palindromic Substring Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. https://leetcode.com/problems/longest-palindr

LeetCode 5:Longest Palindromic Substring(最长回文串)

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 思路一:(超时)简单的截取长度为length(length递减)的字串,判断其是否为回文串.第一个满足要求的回文串最长. public class S

[LeetCode][Python]Longest Palindromic Substring

# -*- coding: utf8 -*-'''__author__ = '[email protected]'https://oj.leetcode.com/problems/longest-palindromic-substring/ Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000,and there exis

Java for LeetCode 005 Longest Palindromic Substring

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 解题思路一: 暴力枚举 共N^2量级个子串(从下标零开始),每次检查需一个for循环,等于是3重for循环,时间复杂度O(n^3) 解题思路二: 动态

【LeetCode】Longest Palindromic Substring 解题报告

DP.KMP什么的都太高大上了,自己想了个朴素的遍历方法. [题目] Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. [思路](应该算是O(n)吧) 从中间向两端搜索,分别找到以每个字母为中心的最长

LeetCode 5. Longest Palindromic Substring(medium难度)

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. Example: Input: "cbbd" Ou