zoj 3557 lucas定理

Given a set S = {1, 2, …, n}, number m and p, your job is to count how many set T satisfies the following condition:

T is a subset of S

|T| = m

T does not contain continuous numbers, that is to say x and x+1 can not both in T

Input

There are multiple cases, each contains 3 integers n ( 1 <= n <= 109 ), m ( 0 <= m <= 104, m <= n ) and p ( p is prime, 1 <= p <= 109 ) in one line seperated by a single space, proceed to the end of file.

Output

Output the total number mod p.

Sample Input

5 1 11

5 2 11

Sample Output

5

6

分析:从n个数里面取出m个来,并且不能有相邻数,等价于

不选n-m个数,那么就得到n-m+1个空吧。

这样原来要求的组合数就变成了将m个数插入n-m+1个空的方法数:

C(n-m+1,m)即可

运用lucas定理: lucas(n,m,p)=C(n%p,m%p,p)*lucas(n/p,m/p,p);

#include <iostream>
#include <stdio.h>
#include <string>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;

ll quick_mod(ll a,ll b,ll mod)
{
    ll ans=1;
    while(b)
    {
       if(b&1)ans=ans*a%mod;
       b/=2;
       a=a*a%mod;
    }
    return ans;
}

ll C(ll n,ll m,ll p)
{
   ll ans=1;
   for(int i=1;i<=m;i++)
   {
     ans=ans*((n-m+i)%p)%p;
     ans=ans*quick_mod(i,p-2,p)%p;
   }
   return ans;
}

ll lucas(ll n,ll m,ll p)
{
  if(m==0)return 1;
  return (C(n%p,m%p,p)%p*(lucas(n/p,m/p,p)%p))%p;
}

int main()
{
    ll n,m,p;
    while(scanf("%lld%lld%lld",&n,&m,&p)!=EOF)
    {
        printf("%lld\n",lucas(n-m+1,m,p));
    }
    return 0;
}

时间: 2024-10-12 20:39:53

zoj 3557 lucas定理的相关文章

ZOJ 3557-How Many Sets II(Lucas定理+插板法求组合数)

题目地址:ZOJ 3557 题意:给一个集合,一共n个元素,从中选取m个元素,满足选出的元素中没有相邻的元素,一共有多少种选法(结果对p取模1 <= p <= 10^9) 思路:用插板法求出组合数.既然是从n个数中选择m个数,那么剩下的数为n-m,那么可以产生n-m+1个空,这道题就变成了把m个数插到这n-m+1个空中有多少种方法,即C(n-m+1,m)%p.然后就Lucas定理上去乱搞.因为这道题的p较大,所以不能预处理. #include <stdio.h> #include

BZOJ 4403 2982 Lucas定理模板

思路: Lucas定理的模板题.. 4403 //By SiriusRen #include <cstdio> using namespace std; const int mod=1000003; #define int long long int cases,N,L,R,fac[mod],inv[mod]; int C(int n,int m){ if(n<m)return 0; if(n<mod&&m<mod)return fac[n]*inv[n-m]

HDU 3037 Saving Beans (数论,Lucas定理)

题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p). 然后再根据费马小定理就能做了. 代码如下: 第一种: #pragma comment(linker, "/STACK:10240

HDU3037 Saving Beans(Lucas定理+乘法逆元)

题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个数是个经典问题,可以+1转化正整数解的个数用插板法解决:$C_{y+n-1}^{n-1}=C_{y+n-1}^y$. 而0<=y<=m,最后的结果就是—— $$\sum_{i=0}^m C_{i+n-1}^i$$ $$C_{n-1}^0+C_{n}^1+C_{n+1}^2+\dots+C_{n-1

【Lucas定理/费马小定理/中国剩余定理/扩展欧几里得】[BZOJ 1951] 古代猪文

[Description] 求 [Solution] 容易得到, 所以,重点在怎么求 如果是p-1是个质数,我们可以用sqrt(n)的时间枚举所有d,用Lucas定理分别计算求和即可. 但是我们发现p-1=2*3*4679*35617,并不是一个质数,所以Lucas定理不能用了吗?并不,我们可以算出这个合式分别对2.3.4679.35617的模值,写出四个同余方程,再用孙子定理求解即可.注意特判g==p的情况,此时费马小定理不成立,ans=0. [Code] #include<cmath> #

[Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535 Description 在很久很久以前,有个臭美国王.一天,他得到了一件新衣,于是决定巡城看看老百姓的反应(囧).于是他命令可怜的宰相数一下他有多少种巡城方案. 城市是一个N*M的矩形,(N+1)*(M+1)条街把城市分成了N*M块.国王从左下角出发,每次只能向右或向上走,右上角是终点. 请你帮帮可怜的宰相. Input

组合数学lucas定理 BZOJ2982 combination

2982: combination Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 597  Solved: 357[Submit][Status][Discuss] Description LMZ有n个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样.那么LMZ能够持续多少个这样的夜晚呢?当然,LMZ的一年有10007天,所以他想知道答案mod 10007的值.(1<=m<=n<=200,000,000) Inpu

Lucas定理学习(进阶中)

(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) .我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理.对于模p而言,我们有下面的式子成立: 上式左右两边的x的某项x^m(m<=n)的系数对模p同余.其

[Lucas定理]【学习笔记】

这种神奇的东西............... 参考资料:http://www.cnblogs.com/jianglangcaijin/p/3446839.html Lucas定理 适用于n很大p较小的时候 $ C_n^m\%p \ p \ is \ prime$ $ n=n_k*p^k+n_{k-1}*p^{k-1}+...+n_2*p^2+n_1*p+n_0 $ $ m=m_k*p^k+m_{k-1}*p^{k-1}+...+m_2*p^2+m_1*p+m_0 $ $ C_n^m=\prod\