定义
? 对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率。
对于算法的时间复杂度效率,我们可以用“大O记法”来表示。
“大O记法”:对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。
时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例,所用时间为T(n)=O(g(n)),
对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n^2和100n^2属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n^2级。
- 我们主要关注算法的最坏情况,亦即最坏时间复杂度。
基本计算规则
1、基本操作,即只有常数项,认为其时间复杂度为O(1)
2、顺序结构,时间复杂度按加法进行计算
3、循环结构,时间复杂度按乘法进行计算
4、分支结构,时间复杂度取最大值
5、判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
6、在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
常见时间复杂度
常见时间复杂度之间的关系
排序算法的时间复杂度
原文地址:https://www.cnblogs.com/bigox/p/11703397.html
时间: 2024-10-12 06:11:26