Paper | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

目录

  • 1. 故事
  • 2. MobileNet
    • 2.1 深度可分离卷积
    • 2.2 网络结构
    • 2.3 引入两个超参数
  • 3. 实验

本文提出了一种轻量级结构MobileNets。其基础是深度可分离卷积操作。

MobileNet具有两个超参数,可以调节精度(accuracy)和延迟(latency)之间的权衡。

1. 故事

现有的模型越来越深,越来越复杂,效率却有可能越来越低。这在实际应用中是无法接受的。

本文于是推出了一种网络,包含两个超参数,可以根据需求适配。

历史工作大多考虑让网络更小,即关注size而非latency。本文提出的网络同时关注这两点。

2. MobileNet

2.1 深度可分离卷积

深度可分离卷积 将 标准卷积操作 分解为 深度卷积 和 \(1 \times 1\)逐点卷积。

在 MobileNet中,深度卷积是对每一个通道分别卷积,逐点卷积就是对 深度卷积的输出通道 进行\(1 \times 1\)整合。【前者是空域的,后者是通道域的,二者完全解耦】

如图,先对\(M\)个输入通道分别空域卷积,得到\(M\)张特征图;然后再整合这些特征图,一共有\(N\)种整合方式,即得到\(N\)张特征图。

具体而言,深度卷积采用的是\(3 \times 3\)卷积核。

2.2 网络结构

网络整体结构如表:

  • 每一个卷积层都跟着一个BN和ReLU激活,除了最后一层。表中的dw就是深度卷积,如图:

  • 其中的降采样是通过步长卷积实现的(正常卷积默认步长为1)。
  • 最后是全局池化(每个通道的尺寸直接变为\(1 \times 1\)) => FC层。
  • 一共有28层卷积。
  • 【规律:通道尺寸不断下降;深度可分离卷积几乎是和正常卷积交替使用的;升通道数都用\(1 \times 1\)卷积完成;在低分辨率通道上卷积层数较多】

最后,我们不应该只关注乘法-加法的数量。我们还应该关注这些操作能否被有效实施。其中,\(1 \times 1\)卷积就是非常高效的矩阵乘法算子,并且对显存要求很低。这归功于GEMM函数。我们统计一下:

\(1 \times 1\)卷积的运算量和参数规模都是最大头的,这对网络有好处。

最后作者发现,由于深度可分离卷积的参数量不大,因此不应该使用weight decay。

2.3 引入两个超参数

首先引入的是通道数瘦身超参数(width multiplier)。在乘以该超参数后,输入和输出通道数都会变成原来的\(\alpha\)倍。典型值为0.75和0.5。

其次引入分辨率瘦身超参数(resolution multiplier)。不用过多解释了。

我们看看效果:

3. 实验

我们就看在ImageNet上的例子。效果不重要,关键是灵活的权衡方式。

原文地址:https://www.cnblogs.com/RyanXing/p/11729264.html

时间: 2024-11-08 23:35:59

Paper | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications的相关文章

【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxiv.org/pdf/1704.04861.pdf 摘要和Prior Work就略了,懒. 1. Introduction 介绍了一种高效的网络架构和两个超参数,以便构建非常小的,低延迟(快速度)的模型,可以轻松匹配移动和嵌入式视觉应用的设计要求.引入的两个简单的全局超参数,使得模型可以在速度和准确度

【网络结构】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications论文解析

0. Paper link MobileNets 1. Overview ??MobileNets是一种基于深度可分割卷积的轻量流线型结构,引进了两个简单的全局超参数在延迟与准确率之间达到了平衡,并且超参数让model builder可以按照不同的应用场景的限制去选择合适大小的模型,网络的主要贡献是把传统的卷积拆成了"deepwise convolution"与"pointwise convolution"来减少卷积过程的计算量与参数数量,同时利用了两个超参数来改变

卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalization Layer Fully-Connected Layer Converting Fully-Connected Layers to Convolutional Layers ConvNet Architectures Layer Patterns Layer Sizing Patterns C

Understanding Convolutional Neural Networks for NLP

When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs were responsible for major breakthroughs in Image Classification and are the core of most Computer Vision systems today, from Facebook's automated pho

[C6] Andrew Ng - Convolutional Neural Networks

About this Course This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applica

Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary

Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary 2017.03.08 Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly. There are several ways in which

(转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Part 2 Introduction Link to Part 1 In this post, we’ll go into a lot more of the specifics of ConvNets. Disclaimer: Now, I do reali

【原创】梵高油画用深度卷积神经网络迭代十万次是什么效果? A neural style of convolutional neural networks

作为一个脱离了低级趣味的码农,春节假期闲来无事,决定做一些有意思的事情打发时间,碰巧看到这篇论文: A neural style of convolutional neural networks,译作卷积神经网络风格迁移. 这不是“暮光女”克里斯丁的研究方向吗?!连好莱坞女星都开始搞人工智能发paper,真是热的可见一斑! 这篇文章中讲述了如何用深层卷积神经网络来将一张普通的照片转化成一幅艺术风格的画作(比如梵高的星夜),可以看做是DL(deep learning)在NPR(非真实渲染non p

(转)A Beginner's Guide To Understanding Convolutional Neural Networks

Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural networks. Sounds like a weird combination of biology and math with a little CS sprinkled in, but