分布式锁的三种实现方式

分布式锁三种实现方式:

1. 基于数据库实现分布式锁;
2. 基于缓存(Redis等)实现分布式锁;
3. 基于Zookeeper实现分布式锁;

一, 基于数据库实现分布式锁

1. 悲观锁

利用select … where … for update 排他锁

注意: 其他附加功能与实现一基本一致,这里需要注意的是“where name=lock ”,name字段必须要走索引,否则会锁表。有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题。

2. 乐观锁

所谓乐观锁与前边最大区别在于基于CAS思想,是不具有互斥性,不会产生锁等待而消耗资源,操作过程中认为不存在并发冲突,只有update version失败后才能觉察到。我们的抢购、秒杀就是用了这种实现以防止超卖。
通过增加递增的版本号字段实现乐观锁

二, 基于缓存(Redis等)实现分布式锁

1. 使用命令介绍:
(1)SETNX
SETNX key val:当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。
(2)expire
expire key timeout:为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。
(3)delete
delete key:删除key

在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。

2. 实现思想:
(1)获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
(2)获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
(3)释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。

3. 分布式锁的简单实现代码:

  1 /**
  2  * 分布式锁的简单实现代码  4  */
  5 public class DistributedLock {
  6
  7     private final JedisPool jedisPool;
  8
  9     public DistributedLock(JedisPool jedisPool) {
 10         this.jedisPool = jedisPool;
 11     }
 12
 13     /**
 14      * 加锁
 15      * @param lockName       锁的key
 16      * @param acquireTimeout 获取超时时间
 17      * @param timeout        锁的超时时间
 18      * @return 锁标识
 19      */
 20     public String lockWithTimeout(String lockName, long acquireTimeout, long timeout) {
 21         Jedis conn = null;
 22         String retIdentifier = null;
 23         try {
 24             // 获取连接
 25             conn = jedisPool.getResource();
 26             // 随机生成一个value
 27             String identifier = UUID.randomUUID().toString();
 28             // 锁名,即key值
 29             String lockKey = "lock:" + lockName;
 30             // 超时时间,上锁后超过此时间则自动释放锁
 31             int lockExpire = (int) (timeout / 1000);
 32
 33             // 获取锁的超时时间,超过这个时间则放弃获取锁
 34             long end = System.currentTimeMillis() + acquireTimeout;
 35             while (System.currentTimeMillis() < end) {
 36                 if (conn.setnx(lockKey, identifier) == 1) {
 37                     conn.expire(lockKey, lockExpire);
 38                     // 返回value值,用于释放锁时间确认
 39                     retIdentifier = identifier;
 40                     return retIdentifier;
 41                 }
 42                 // 返回-1代表key没有设置超时时间,为key设置一个超时时间
 43                 if (conn.ttl(lockKey) == -1) {
 44                     conn.expire(lockKey, lockExpire);
 45                 }
 46
 47                 try {
 48                     Thread.sleep(10);
 49                 } catch (InterruptedException e) {
 50                     Thread.currentThread().interrupt();
 51                 }
 52             }
 53         } catch (JedisException e) {
 54             e.printStackTrace();
 55         } finally {
 56             if (conn != null) {
 57                 conn.close();
 58             }
 59         }
 60         return retIdentifier;
 61     }
 62
 63     /**
 64      * 释放锁
 65      * @param lockName   锁的key
 66      * @param identifier 释放锁的标识
 67      * @return
 68      */
 69     public boolean releaseLock(String lockName, String identifier) {
 70         Jedis conn = null;
 71         String lockKey = "lock:" + lockName;
 72         boolean retFlag = false;
 73         try {
 74             conn = jedisPool.getResource();
 75             while (true) {
 76                 // 监视lock,准备开始事务
 77                 conn.watch(lockKey);
 78                 // 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁
 79                 if (identifier.equals(conn.get(lockKey))) {
 80                     Transaction transaction = conn.multi();
 81                     transaction.del(lockKey);
 82                     List<Object> results = transaction.exec();
 83                     if (results == null) {
 84                         continue;
 85                     }
 86                     retFlag = true;
 87                 }
 88                 conn.unwatch();
 89                 break;
 90             }
 91         } catch (JedisException e) {
 92             e.printStackTrace();
 93         } finally {
 94             if (conn != null) {
 95                 conn.close();
 96             }
 97         }
 98         return retFlag;
 99     }
100 }

4. 测试刚才实现的分布式锁

例子中使用50个线程模拟秒杀一个商品,使用–运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。

模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。

public class Service {

    private static JedisPool pool = null;

    private DistributedLock lock = new DistributedLock(pool);

    int n = 500;

    static {
        JedisPoolConfig config = new JedisPoolConfig();
        // 设置最大连接数
        config.setMaxTotal(200);
        // 设置最大空闲数
        config.setMaxIdle(8);
        // 设置最大等待时间
        config.setMaxWaitMillis(1000 * 100);
        // 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的
        config.setTestOnBorrow(true);
        pool = new JedisPool(config, "127.0.0.1", 6379, 3000);
    }

    public void seckill() {
        // 返回锁的value值,供释放锁时候进行判断
        String identifier = lock.lockWithTimeout("resource", 5000, 1000);
        System.out.println(Thread.currentThread().getName() + "获得了锁");
        System.out.println(--n);
        lock.releaseLock("resource", identifier);
    }
}

模拟线程进行秒杀服务;

public class ThreadA extends Thread {
    private Service service;

    public ThreadA(Service service) {
        this.service = service;
    }

    @Override
    public void run() {
        service.seckill();
    }
}

public class Test {
    public static void main(String[] args) {
        Service service = new Service();
        for (int i = 0; i < 50; i++) {
            ThreadA threadA = new ThreadA(service);
            threadA.start();
        }
    }
}

结果如下,结果为有序的:

若注释掉使用锁的部分:

public void seckill() {
    // 返回锁的value值,供释放锁时候进行判断
    //String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
    System.out.println(Thread.currentThread().getName() + "获得了锁");
    System.out.println(--n);
    //lock.releaseLock("resource", indentifier);
}

从结果可以看出,有一些是异步进行的:

三, 基于Zookeeper实现分布式锁

ZooKeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一个目录下只能有一个唯一文件名。基于ZooKeeper实现分布式锁的步骤如下:

(1)创建一个目录mylock;
(2)线程A想获取锁就在mylock目录下创建临时顺序节点;
(3)获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获得锁;
(4)线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;
(5)线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小的节点,如果是则获得锁。

这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。

优点:具备高可用、可重入、阻塞锁特性,可解决失效死锁问题。

缺点:因为需要频繁的创建和删除节点,性能上不如Redis方式。

四,对比

数据库分布式锁实现
缺点:

1.db操作性能较差,并且有锁表的风险
2.非阻塞操作失败后,需要轮询,占用cpu资源;
3.长时间不commit或者长时间轮询,可能会占用较多连接资源

Redis(缓存)分布式锁实现
缺点:

1.锁删除失败 过期时间不好控制
2.非阻塞,操作失败后,需要轮询,占用cpu资源;

ZK分布式锁实现
缺点:性能不如redis实现,主要原因是写操作(获取锁释放锁)都需要在Leader上执行,然后同步到follower。

总之:ZooKeeper有较好的性能和可靠性。

从理解的难易程度角度(从低到高)数据库 > 缓存 > Zookeeper

从实现的复杂性角度(从低到高)Zookeeper >= 缓存 > 数据库

从性能角度(从高到低)缓存 > Zookeeper >= 数据库

从可靠性角度(从高到低)Zookeeper > 缓存 > 数据库

原文地址:https://www.cnblogs.com/barrywxx/p/11644803.html

时间: 2024-11-06 09:53:31

分布式锁的三种实现方式的相关文章

分布式锁的三种实现方式及其比较(一)

1 实现方式 分布式锁的实现,目前比较常用的有以下几种方案: 基于Zookeeper实现实现分布式锁 基于缓存(如redis等)分布式锁 基于数据库实现分布式锁 2 基于Zookeeper实现实现分布式锁 实现原理是: 每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点. 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个. 当释放锁的时候,只需将这个瞬时节点删除即可 锁的释放:使用Zookeeper可以有效的解决锁无法释放

分布式锁的几种实现方式

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency).可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项.”所以,很多系统在设计之初就要对这三者做出取舍.在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即

【连载】redis库存操作,分布式锁的四种实现方式[三]--基于Redis watch机制实现分布式锁

一.redis的事务介绍 1. Redis保证一个事务中的所有命令要么都执行,要么都不执行.如果在发送EXEC命令前客户端断线了,则Redis会清空事务队列,事务中的所有命令都不会执行.而一旦客户端发送了EXEC命令,所有的命令就都会被执行,即使此后客户端断线也没关系,因为Redis中已经记录了所有要执行的命令. 2. 除此之外,Redis的事务还能保证一个事务内的命令依次执行而不被其他命令插入.试想客户端A需要执行几条命令,同时客户端B发送了一条命令,如果不使用事务,则客户端B的命令可能会插入

分布式锁的几种使用方式(redis、zookeeper、数据库)

Q:一个业务服务器,一个数据库,操作:查询用户当前余额,扣除当前余额的3%作为手续费synchronizedlockdb lockQ:两个业务服务器,一个数据库,操作:查询用户当前余额,扣除当前余额的3%作为手续费分布式锁我们需要怎么样的分布式锁?可以保证在分布式部署的应用集群中,同一个方法在同一时间只能被一台机器上的一个线程执行. 这把锁要是一把可重入锁(避免死锁) 这把锁最好是一把阻塞锁(根据业务需求考虑要不要这条) 这把锁最好是一把公平锁(根据业务需求考虑要不要这条) 有高可用的获取锁和释

分布式锁简单入门以及三种实现方式介绍

前言 很多小伙伴在学习Java的时候,总是感觉Java多线程在实际的业务中很少使用,以至于不会花太多的时间去学习,技术债不断累积!等到了一定程度的时候对于与Java多线程相关的东西就很难理解,今天需要探讨的东西也是一样的和Java多线程相关的!做好准备,马上开车! 学过Java多线程的应该都知道什么是锁,没学过的也不用担心,Java中的锁可以简单的理解为多线程情况下访问临界资源的一种线程同步机制. 在学习或者使用Java的过程中进程会遇到各种各样的锁的概念:公平锁.非公平锁.自旋锁.可重入锁.偏

分布式锁三种实现方式(数据库实现,缓存Redis等,Zookeeper)

分布式锁三种实现方式: 1. 基于数据库实现分布式锁: 2. 基于缓存(Redis等)实现分布式锁: 3. 基于Zookeeper实现分布式锁: 一, 基于数据库实现分布式锁 1. 悲观锁 利用select … where … for update 排他锁 注意: 其他附加功能与实现一基本一致,这里需要注意的是“where name=lock ”,name字段必须要走索引,否则会锁表.有些情况下,比如表不大,mysql优化器会不走这个索引,导致锁表问题. 2. 乐观锁 所谓乐观锁与前边最大区别在

分布式锁的几种常用实现方式

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency).可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项.”所以,很多系统在设计之初就要对这三者做出取舍.在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即

搞懂分布式技术16:浅谈分布式锁的几种方案

搞懂分布式技术16:浅谈分布式锁的几种方案 前言 随着互联网技术的不断发展,数据量的不断增加,业务逻辑日趋复杂,在这种背景下,传统的集中式系统已经无法满足我们的业务需求,分布式系统被应用在更多的场景,而在分布式系统中访问共享资源就需要一种互斥机制,来防止彼此之间的互相干扰,以保证一致性,在这种情况下,我们就需要用到分布式锁. 分布式一致性问题 首先我们先来看一个小例子: 假设某商城有一个商品库存剩10个,用户A想要买6个,用户B想要买5个,在理想状态下,用户A先买走了6了,库存减少6个还剩4个,

分布式锁的几种实现(转)

本文出自: http://www.cnblogs.com/austinspark-jessylu/p/8043726.html 目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题.分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency).可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项.”所以,很多系统在设计之初就要对这三者做出取舍.在互联网领域的绝大多